Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New UNC laboratory to help track and control tropical diseases

29.09.2008
The University of North Carolina at Chapel Hill School of Public Health has established a new Gillings Innovation Lab to track and map tropical infectious diseases such as malaria, using state-of-the-art molecular and demographic methods.

Better information about the prevalence and location of diseases will help national and international health organizations around the world treat and control these diseases.

Steven R. Meshnick, M.D., Ph.D., UNC an epidemiology professor in the School of Public Health and an expert on molecular epidemiology and infectious diseases, will lead the new project, known as the laboratory for molecular surveillance of tropical diseases.

The lab will work with the research and evaluation company ORC-Macro, the Institute of Tropical Medicine in Antwerp, Belgium, and the Kinshasa School of Public Health in the Democratic Republic of Congo. Together, the group will measure the distribution of malaria, drug-resistant malaria, African sleeping sickness and other infectious diseases in the Democratic Republic of Congo.

"Infectious diseases remain the leading cause of death and disability in developing countries," Meshnick said. "Current maps and prevalence data on tropical diseases are usually estimates based on samples that paint a potentially inaccurate picture. We want to help international and national health organizations get better data and maps for tropical diseases from representative population-based surveys. Better information will help guide efforts to control tropical diseases, and also will help in evaluating the effectiveness of efforts to control their spread."

The team includes geographer Mike Emch, Ph.D., associate professor in the College of Arts and Sciences, and molecular microbiologist, Melissa Miller, Ph.D., assistant professor in the pathology and laboratory medicine department in the School of Medicine. It also includes Democratic Republic of Congo scientists, which should help build expertise within the country.

Meshnick said he hoped the new lab's disease surveillance approach will become a model for similar surveillance programs in other developing countries.

"This work will help the 'poorest of the poor,' who bear the brunt of the burden of tropical diseases," Meshnick said.

The team's initial work will involve analyzing 9,000 dried blood spots collected in 2007 for tracking HIV infection.

The Gillings Innovation Labs, part of Carolina Public Health Solutions, were established in the school in 2007 and are funded through a $50 million gift pledged by Dennis and Joan Gillings. In honor of the gift, the school will be renamed the UNC Gillings School of Global Public Health on Friday (Sept. 26).

The labs' purpose is to anticipate future public health challenges and accelerate solutions through groundbreaking science, research, teaching and practice, and through interdisciplinary teams and effective translation of interventions to high-impact settings. Meshnick's is the 10th such lab announced by the school. It will begin in January 2009 and continue for two years.

Other Gillings Innovation Labs have been established to develop vaccines for respiratory diseases that are simpler to store and administer than current vaccines; provide greater access to safe and clean water; improve care for the mentally ill; monitor air quality; and weigh benefits of locally grown foods.

Patric Lane | EurekAlert!
Further information:
http://www.unc.edu
http://www.sph.unc.edu/accelerate

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>