Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Typical mutations in children of radar soldiers

05.10.2018

The offspring of radar soldiers exposed to high doses of radiation during their service experience more genetic alterations than families without radiation exposure. This has been demonstrated in a pilot study by the research team involving Charité-Universitätsmedizin Berlin, the Berlin Institute of Health (BIH), the Max Delbrück Centre for Molecular Medicine, Radboud University Nijmegen (Netherlands) and the University Hospital Bonn, which has now been published in the journal ‘Scientific Reports’. The results of this pilot study will be reviewed in a larger scale study.

Until the 1980s, military radar systems were often inadequately shielded against spurious radiation emitted by radar amplifier tubes. Such rays can cause radiation damage to service and maintenance personnel. The persons involved have joined forces in the ‘Association for the support of persons harmed by radar beams‘. In 2003, a commission of experts made recommendations on compensatory payments.


The graph illustrates how radiation alters the genome: a ‘multisite de novo mutation’ (MSDN) occurs when two or more defects occur adjacently in the DNA strands of 20 base pairs.

© Jean-Tori Pantel


The graph illustrates how radiation alters the genome: a ‘multisite de novo mutation’ (MSDN) occurs when two or more defects occur adjacently in the DNA strands of 20 base pairs.

© Jean-Tori Pantel

Since some children of former radar soldiers suffer from physical disabilities attributed to the radiation exposure of their fathers, their offspring are now in the spotlight. Whether radiation led to genotype damage in these children is debated.

A research team from Charité-Universitätsmedizin Berlin, the Berlin Institute of Health (BIH), the Max Delbrück Center for Molecular Medicine, Radboud University Nijmegen (Netherlands) and the University Hospital Bonn have now investigated this question in a pilot study.

‘Through the latest methods of high-throughput sequencing, the complete genomes of parents and their children can now be studied within a short time. This allows us to determine the mutation rates after radiation exposure much more accurately than before’ says first author Dr. med. Manuel Holtgrewe of the Core Unit Bioinformatics (CUBI) of the Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin.

Researchers studied the genomes of twelve families

The scientists studied the genomes of twelve families of radar soldiers. The entire genomes of 18 offspring and their parents were sequenced. The exact radiation exposure of the soldiers cannot be determined retroactively. Researchers estimate, however, that a ‘high dose’ of radiation emanated from the radar systems, especially because radar soldiers very frequently became ill, many from cancer. Scientists compared the mutation rates in the genomes of radar soldier families with that of 28 offspring of parents who were not exposed to radiation.

The focus was on so-called ‘multisite de novo mutations’ (MSDN), which have already been demonstrated in mice because of radiation. An MSDN is present when two or more defects in DNA strands occur adjacently to each other in a line of 20 base pairs. While in the families without radiation exposure, only every fifth offspring had an MSDN, in the radar soldier families this was two out of three offspring.

Twelve MSDNs were found in the 18 offspring of radar soldiers, in one family indeed six MSDNs in three offspring. In addition, in two offspring, chromosomal alterations were also detected that had serious clinical consequences. The origin of these mutations could also be traced back to the paternal germ line and only rarely occurs by chance.

‘The results of our pilot study suggest that an accumulation of certain genotype damage by radiation can basically be demonstrated in the next generation,’ says Prof. Dr. med. Peter Krawitz from the Institute for Genomic Statistics and Bioinformatics at the University Hospital Bonn. How pronounced the accumulation of genotype damage by radiation is must be demonstrated by even larger studies, the results of which rely on a much broader database.

A team involving Krawitz is currently planning such a follow-up study together with the Institute of Human Genetics of the University Hospital Bonn, the Charité-Universitätsmedizin Berlin and the Berlin Institute of Health (BIH), who are funding it.

The researchers thank the Government Organisation in Support of Radar Victims (BzUR) and its members for supporting the current study. The investigation was facilitated by a private donation of 50,000 euros by Dr. Gisela Sperling.

Wissenschaftliche Ansprechpartner:

Dr. Manuel Holtgrewe
Core Unit Bioinformatics
Berlin Institute of Health (BIH)
Charité - University Medicine Berlin
Tel. + 30-450-543 601
Email: manuel.holtgrewe@bihealth.de

Prof Dr. med. Dipl. Phys. Peter Krawitz
Institute of Genomic Statistics and Bioinformatics
University Hospital Bonn
Tel. + 49-228-28714733
Email: pkrawitz@uni-bonn.de

Originalpublikation:

Manuel Holtgrewe, Alexej Knaus, Gabriele Hildebrand, Jean-Tori Pantel, Miguel Rodriguez des los Santos, Kornelia Nieveling, Max Schubach, Marten Jäger, Marie Coutelier, Stefan Mundlos, Dieter Beule, Karl Sperling, Peter Krawitz: Multisite de novo mutations in human offspring after paternal exposure to ionizing radiation, Scientific Reports, Internet: www.nature.com/articles/s41598-018-33066-x

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>