Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tooth movement an alternative to bone transplants

10.10.2011
Although replacing lost teeth often involves artificially building up the jaw, researchers at the Sahlgrenska Academy at the University of Gothenburg, Sweden, are now showcasing a new method whereby teeth are instead moved into the toothless area using a brace, giving patients the chance of having more teeth.

When we lose our teeth, perhaps because of illness or injury, the jaw in the toothless area also decreases in volume. This reduction makes it difficult to carry out dental implants, often leaving just one option for replacing lost teeth: building up the jaw with bone transplant.

Alternative method

Researchers at the University of Gothenburg’s Sahlgrenska Academy are now presenting an alternative method. In an experimental study on dogs, the Gothenburg researchers managed to use a brace to move existing teeth into a toothless area with limited bone volume, without any reduction of the tooth's natural attachment in the jaw.

In a subsequent clinical study, consultant Orthodontist Birgitta Lindskog Stokland and her colleagues also managed to show that the same procedure in humans caused only small changes in the tissue around the tooth.

No lasting problems

"X-rays showed some damage to the root known as root resorption, but this didn’t seem to cause any lasting problems," says Lindskog Stokland. "What’s more, our follow-ups a year later showed that the damage had lessened."

The original site of the moved tooth suffers a reduction in bone mass and dental tissue volume, though not to the same extent as when teeth come out for other reasons. This means that this area is well-suited to implants or other tooth replacements, without there being any need for bone transplants.

More teeth more easily

"In other words, many patients can be given more teeth more easily," says Lindskog Stokland.

The thesis has been successfully defended.

For more information, please contact: Birgitta Lindskog Stokland
Telephone: +46 (0)706 323 522, +46 (0)31 741 2255
Email: Birgitta.lindskog-stokland@odontologi.gu.se, Birgitta.Lindskog-Stokland@vgregion.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://gupea.ub.gu.se/handle/2077/25486

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>