Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapy substitutes missing protein in those with muscular dystrophy

28.05.2009
Researchers were able to repair muscle tissue in mouse model

Researchers at the University of Minnesota Medical School have discovered a new therapy that shows potential to treat people with Duchenne muscular dystrophy, a fatal disease and the most common form of muscular dystrophy in children.

In the mouse model, researchers were able to substitute for the missing protein – dystrophin, which forms a key part of the framework that holds muscle tissue together – that results in the disease, effectively repairing weakened muscle tissue.

Researchers injected dystrophic mice with a protein called utrophin – a very close relative of dystrophin – that was modified with a cell-penetrating tag, called TAT.

The study is the first to establish the efficacy and feasibility of the TAT-utrophin-based protein as a viable therapy for the treatment of muscular dystrophy as well as cardiac muscle diseases caused by loss of dystrophin.

The research is published in the May 26, 2009 issue of PLoS Medicine.

"This unique approach can replace the missing protein without the complexities of gene replacement or stem cell approaches," said James Ervasti, Ph.D., principal investigator of the study and a professor in the Department of Biochemistry, Molecular Biology & Biophysics.

Muscular dystrophy causes the muscles in the body to progressively weaken. Duchenne is the most common and severe form of childhood muscular dystrophy. About one of 3,500 boys are born with the crippling disease. Symptoms usually begin in children who are 2 to 3 years-old, most are in a wheelchair by age 12, and many who have the disease pass away by their late teens to early 20s. Current treatment, limited to corticosteroids, are minimally effective and can cause serious side effects.

Research underway to battle muscular dystrophy with gene therapy and stem cell treatment shows promise, but major hurdles must be overcome before these approaches are viable in human patients, Ervasti said.

Delivering treatment to every muscle cell via gene therapy or stem cells is difficult because muscle tissue makes up such a large portion of the human body. Furthermore, the immune system may reject the cell or gene treatment because patients would treat the newly introduced cells or genes as a foreign substance.

Ervasti's method may conquer both of those problems. Upon injection, the TAT-utrophin combination spreads around the entire body efficiently and is able to penetrate the muscle cell wall to substitute for missing dystrophin. Because every cell in the body makes utrophin naturally, TAT-utrophin circumvents immunity issues associated with other therapeutic approaches.

"Our protein replacement approach most directly and simply addresses the cause of Duchenne muscular dystrophy," Ervasti said.

This new method is not a cure for muscular dystrophy. Rather, it would be a therapy most likely administered on a regular basis. If the treatment works in larger animal models and humans, it's most likely researchers would develop a drug for patients. Ervasti is hopeful the therapy can move into human clinical trials within 3 years.

The research was funded by the Muscular Dystrophy Association, the Nash Avery Foundation, Charley's Fund and the Foundation to Eradicate Duchenne.

Nick Hanson | EurekAlert!
Further information:
http://www.umn.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>