Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology improves malaria control and vaccine development

06.06.2012
A new technique that accurately determines the risk of infants in endemic countries developing clinical malaria could provide a valuable tool for evaluating new malaria prevention strategies and vaccines.
The technique could even help to understand how anti-malarial vaccine and treatment strategies act to reduce malaria, say researchers from the Walter and Eliza Hall Institute, Swiss Tropical and Public Health Institute, University of Basel and the Papua New Guinea Institute of Medical Research.

Professor Ivo Mueller from the Walter and Eliza Hall Institute's Infection and Immunity division said the research team discovered that the number of new malaria parasites that infants acquire over time is strongly linked to the risk that the child will develop clinical disease.

“It was very clear that infection with new and genetically different malaria parasites was the single biggest factor in determining the risk of an infant becoming sick from malaria, more than any other factor including age, the use of bed nets or the risk of transmission in the area. We were actually surprised by how clear the correlation was,” Professor Mueller said.

The molecular technique to genetically differentiate Plasmodium falciparum parasites was developed by Dr Ingrid Felger at the Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Switzerland. Professor Terry Speed from the Walter and Eliza Hall Institute’s Bioinformatics division helped to develop mathematical algorithms to process the data.

Dr Felger said the researchers used high-throughput screening to determine the number of genetically-distinct Plasmodium falciparum malaria parasites that acquired by Papua New Guinean children aged one to four over a period of 16 months. The research was published today in the journal Proceedings of the National Academy of Sciences of the United States of America.

“This new research tool is elegantly simple but very powerful, and easily applicable in many circumstances, without a high level of technology or training,” Dr Felger said. “We think it could have profound applications. This technology will be particularly useful for assessing ideal vaccine candidates for preventing malaria, help to develop better ways of performing future human trials of new potential malaria vaccines, and identifying the mechanism of action for existing vaccines and treatments.”

Each year more than 250 million people worldwide contract malaria, and up to one million people die. Malaria is particularly dangerous for children under five and pregnant women. Plasmodium falciparum is the most lethal of the four Plasmodium species, and is responsible for most clinical disease.

Professor Mueller said the technology is already being used in the field, recently helping to explain why people with sickle-cell anaemia are less at risk of malaria infection. He said that accurately assessing the burden of malaria parasites acquired by children in countries where the disease is endemic is invaluable.

“One of our biggest problems in developing useful vaccines, treatments and preventative strategies for malaria is reliably predicting the distribution and risk of malaria at an individual level. There is huge variation in the risk of developing clinical malaria within a community or village, or within a particular age group, and we now have an accurate way to measure this,” Professor Mueller said.

The research was supported by the Swiss National Science Foundation, National Institutes of Health and the Victorian Government.

Read the scientific paper at Proceedings of the National Academy of Sciences.

Download media release (pdf).

For further information

Liz Williams
Media and Publications Manager
Ph: +61 3 9345 2928
Mob: +61 405 279 095
Email: williams@wehi.edu.au

Liz Williams | EurekAlert!
Further information:
http://www.wehi.edu.au

More articles from Health and Medicine:

nachricht Remdesivir prevents MERS coronavirus disease in monkeys
14.02.2020 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Recent advances in addressing tuberculosis give hope for future
12.02.2020 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Gold nanoclusters: new frontier for developing medication for treatment of Alzheimer's disease

17.02.2020 | Life Sciences

Artificial intelligence is becoming sustainable!

17.02.2020 | Information Technology

Catalyst deposition on fragile chips

17.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>