Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology improves malaria control and vaccine development

06.06.2012
A new technique that accurately determines the risk of infants in endemic countries developing clinical malaria could provide a valuable tool for evaluating new malaria prevention strategies and vaccines.
The technique could even help to understand how anti-malarial vaccine and treatment strategies act to reduce malaria, say researchers from the Walter and Eliza Hall Institute, Swiss Tropical and Public Health Institute, University of Basel and the Papua New Guinea Institute of Medical Research.

Professor Ivo Mueller from the Walter and Eliza Hall Institute's Infection and Immunity division said the research team discovered that the number of new malaria parasites that infants acquire over time is strongly linked to the risk that the child will develop clinical disease.

“It was very clear that infection with new and genetically different malaria parasites was the single biggest factor in determining the risk of an infant becoming sick from malaria, more than any other factor including age, the use of bed nets or the risk of transmission in the area. We were actually surprised by how clear the correlation was,” Professor Mueller said.

The molecular technique to genetically differentiate Plasmodium falciparum parasites was developed by Dr Ingrid Felger at the Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Switzerland. Professor Terry Speed from the Walter and Eliza Hall Institute’s Bioinformatics division helped to develop mathematical algorithms to process the data.

Dr Felger said the researchers used high-throughput screening to determine the number of genetically-distinct Plasmodium falciparum malaria parasites that acquired by Papua New Guinean children aged one to four over a period of 16 months. The research was published today in the journal Proceedings of the National Academy of Sciences of the United States of America.

“This new research tool is elegantly simple but very powerful, and easily applicable in many circumstances, without a high level of technology or training,” Dr Felger said. “We think it could have profound applications. This technology will be particularly useful for assessing ideal vaccine candidates for preventing malaria, help to develop better ways of performing future human trials of new potential malaria vaccines, and identifying the mechanism of action for existing vaccines and treatments.”

Each year more than 250 million people worldwide contract malaria, and up to one million people die. Malaria is particularly dangerous for children under five and pregnant women. Plasmodium falciparum is the most lethal of the four Plasmodium species, and is responsible for most clinical disease.

Professor Mueller said the technology is already being used in the field, recently helping to explain why people with sickle-cell anaemia are less at risk of malaria infection. He said that accurately assessing the burden of malaria parasites acquired by children in countries where the disease is endemic is invaluable.

“One of our biggest problems in developing useful vaccines, treatments and preventative strategies for malaria is reliably predicting the distribution and risk of malaria at an individual level. There is huge variation in the risk of developing clinical malaria within a community or village, or within a particular age group, and we now have an accurate way to measure this,” Professor Mueller said.

The research was supported by the Swiss National Science Foundation, National Institutes of Health and the Victorian Government.

Read the scientific paper at Proceedings of the National Academy of Sciences.

Download media release (pdf).

For further information

Liz Williams
Media and Publications Manager
Ph: +61 3 9345 2928
Mob: +61 405 279 095
Email: williams@wehi.edu.au

Liz Williams | EurekAlert!
Further information:
http://www.wehi.edu.au

More articles from Health and Medicine:

nachricht Researchers develop high-performance cancer vaccine using novel microcapsules
25.05.2020 | Chinese Academy of Sciences Headquarters

nachricht Blood flow recovers faster than brain in micro strokes
25.05.2020 | Rice University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Inexpensive retinal diagnostics via smartphone

25.05.2020 | Medical Engineering

Smart machine maintenance: New AI system also detects unknown faults

25.05.2020 | Information Technology

Artificial Intelligence for optimized mobile communication

25.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>