Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study could aid development of new drugs to treat gout

20.03.2013
Findings from a Loyola University Chicago Stritch School of Medicine study could lead to the development of new drugs to treat gout.

The study, led by Liang Qiao, MD, and his colleagues and collaborators, was published March 19 in the journal Nature Communications.

Gout is caused by a buildup of uric acid around joints, typically the big toe, knee or ankles. The immune system revs up to attack uric acid salt crystals, and this immune response causes painful inflammation.

The innate immune response is mainly activated by calcium that enters a macrophage immune cell through an opening called the calcium channel. There are several types of calcium channels. Researchers found that a particular type of calcium channel, called TRPM2, is responsible for initiating the immune response. (TRPM2 stands for transient receptor potential melastatin 2.)

In lab mice, study collaborators from Japan knocked out a gene that is responsible for this calcium channel. Qiao's team then exposed these "knockout" mice and a comparison group of normal mice to uric acid salt crystals and to a liposome, a compound that also causes inflammation. They found that inflammation was significantly lower in the knockout mice that lacked the TRPM2 calcium channel. They therefore concluded that disabling the TRPM2 calcium channel could be key to reducing painful inflammation from gout.

The next step will be to design a compound that would block the TRPM2 calcium channel, and then test how well this compound reduces inflammation in an animal model.

The study's findings might also apply to Alzheimer's disease and arteriosclerosis (hardening of the arteries). These two diseases, like gout, have been linked to inflammation. And it is possible that the TRPM2 calcium channel may be key to initiating the inflammatory response in these two diseases as well. But this has not been proven yet, Qiao said.

The study also could aid in the development of new vaccines. Researchers elsewhere are studying whether liposomes could serve as more effective adjuvants in new vaccines. (An adjuvant is the component in a vaccine that stimulates the immune system to attack a pathogen such as a virus or bacterium). The Loyola study found that only liposomes with either a positive or a negative electric charge are effective in stimulating the immune system.

Liposomes with a neutral charge did not stimulate the immune system.

Qiao, senior author of the study, is a professor in the Department of Microbiology and Immunology at Loyola University Chicago Stritch School of Medicine. Co-authors of the study are Zhenyu Zhong (first author, significant contributor), Yougang Zhai, Shuang Liang and Renzhi Han, all of Loyola University Chicago; Yasou Mori of Kyoto University in Japan; and Fayyaz S. Sutterwala of the University of Iowa.

The study was supported by grants from the National Institutes of Health, American Heart Association and Muscular Dystrophy Association.

Jim Ritter | EurekAlert!
Further information:
http://www.lumc.edu

More articles from Health and Medicine:

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>