Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shrinking 3-D technology for comfortable smart phone viewing

24.02.2016

Using a technique called super multi-view, Chinese researchers have developed a thin display that creates a three-dimensional image without causing viewing discomfort

Imagine watching a 3D movie on your smart phone and suddenly getting a headache or even feeling nauseous. Such viewer discomfort is one of the biggest obstacles preventing widespread application of 3D display technology - especially for portable devices whose slim design poses an extra challenge.


A super multi-view (SMV) system with comfortable 3-D effects, constructed by a group of OLED microdisplay/projecting lens pairs, is proposed in this paper. Through gating different segments of each projecting lens sequentially and refreshing the virtual image of the corresponding microdisplay synchronously, the proposed SMV system greatly decreases the demand on the number of employed microdisplays and at the same time takes a thin optical structure, endowing great potential for portable devices.

Credit: Dongdong Teng

Now researchers at the Sun Yan-Sen University, China have developed a new display with comfortable 3D visual effects. The device is based on a "super multi-view technique" which works to reduce viewer discomfort. It also greatly decreases the required number of microdisplays, which makes a compact design possible. The researchers describe their device in a paper in the journal Optics Express, from The Optical Society (OSA).

"There are many causes for 3D-viewing discomfort, but the most substantial one is the vergence-accomodation conflict," said Lilin Liu, author and an associate professor of the State Key Lab of Optoelectronics Materials and Technology, Sun Yat-Sen University, China. She explained that vergence-accomodation conflict is a mismatch between the point at which the eyes converge on an image and the distance to which they focus when viewing 3D images.

Human eyes are separated by about six centimeters, which means that when we look at an object, the two eyes see slightly different images. Our brain directs both eyes to the same object and the distance at which the eyes' sight lines cross is technically called "vergence distance." Meanwhile, our brain adjusts the focus of the lens within each eye to make the image sharp and clear on the retina. The distance to which the eye is focused is called "the accommodative distance." Failure to converge leads to double images, while mis-accommodation results in blurry images.

In natural viewing, human's vergence and accommodation responses are correlated with each other and adjust simultaneously. In other words, vergence and accommodation distance are almost always the same -- that's why we can always see an object clearly and comfortably.

Conventional 3D displays try to mimic the natural viewing by creating images with varying binocular difference, which simulates vergence changes in the natural 3D landscape. But the accommodative distance remains unchanged at the display distance, resulting in the so-called vergence-accomodation conflict that causes viewer discomfort.

"Conventional 3D displays usually deliver some views of the displayed spatial spot to a single eye pupil. That is why accommodative distance remains fixed on the display screen and cannot adjust simultaneously as vergence distance does, causing vergence-accomodation conflict," said Liu.

The team's solution is to project numerous 2D perspective views to viewpoints with intervals smaller than the pupil diameter of the eye. This means the device can deliver at least two different views to a single eye pupil.

"Our proposed scheme overcomes vergence-accomodation conflict by delivering more than two views to a single eye pupil, making the eyes focus on the displayed image naturally. Also, the prototype in our study is 65-millimeter-thin, and the system could become thinner with improvement in structural elements, which provides a demo for comfortable 3D wearable electronics or portable displays," said Dongdong Teng, co- author of the paper.

The team's prototype system consists of 11 elementary projecting units. Each projecting unit is constructed by an organic light-emitting diode (OLED) microdisplay, a rectangular projecting lens, two vertical baffles and a group of gating apertures (liquid crystal panel) attached to the projecting lens. By gating different gating apertures in sequence and refreshing the virtual image of the corresponding microdisplay synchronously, the researchers can obtain dense viewpoints on the display screen.

"Creating a dense arrangement of viewpoints on the display screen is the key to comfortable 3D effect," Liu noted.

To test viewers' reactions to the prototype system, eight subjects were asked to observe a displayed 3D image of an apple in the lab environment and no headache or discomfort was reported.

Moreover, as the gating aperture array is adhered to the projecting unit array, the size of the prototypestructure is thin, around 65 millimeters, which is promising for applications in portable devices.

Liu said adjustments to the device could make it even thinner, which is a focus of their future work.

"The novelty and the main merit of our super multi-view system lie in the thin structure. To the best of our knowledge, this is the first report of a 'super multi-view system' with thin structure, which makes it suitable for portable electronics such as smart phones and wearable devices," Liu said.

###

Paper: Lilin Liu, Zhiyong Pang, and Dongdong Teng, "Super multi-view three-dimensional display technique for portable devices," Opt. Express 24, 4421-4430 (2016)

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by The Optical Society and edited by Andrew M. Weiner of Purdue University. Optics Express is an open-access journal and is available at no cost to readers online at: OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and entrepreneurs who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org/100.

Media Contact

Rebecca Andersen
RAndersen@osa.org
202-416-1443

 @opticalsociety

http://www.osa.org 

Rebecca Andersen | EurekAlert!

Further reports about: 3D displays lens microdisplay prototype system smart phone super multi-view

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>