Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists map key brain-to-spinal cord nerve connections for voluntary movement

02.05.2018

Study opens way to explore potential therapies for spinal cord injury and stroke

Researchers trying to help people suffering from paralysis after a spinal cord injury or stroke mapped critical brain-to-spinal cord nerve connections that drive voluntary movement in forelimbs, a development that scientists say allows them to start looking for specific repair strategies.


This microscopic image shows corticospinal neurons and synaptic connections to the spinal cord in a mouse. Spinal interneurons (blue) show synaptic connections (in green) with corticospinal axons (red). Researchers report in Cell Reports the mapping of critical nerve connections to the spine that drive voluntary movement in forelimbs. The gridlines allow scientists to plot the neuron locations along the spinal cord. Scientists say the information will be useful as they begin searching in future preclinical studies for specific repair strategies to help people who had a stroke or spinal cord injury.

Credit: Cincinnati Children's

The study by Yutaka Yoshida, PhD, and colleagues at Cincinnati Children's Hospital Medical Center is an important step toward rehabilitating motor circuits to help motor function recover after an injury or disease damages the central nervous system, the scientists report in Cell Reports.

"The map described in this study should allow us to explore which corticospinal-spinal interneuron connections are good targets for repair and restoration of voluntary movement," says Yoshida, lead investigator in the Division of Developmental Biology. "More research is necessary before human therapies are possible, but this information is very helpful for future repair strategies. We now know which circuits need to be repaired."

The scientists said it will take years for additional investigative work to make the current findings therapeutically relevant. Yoshida and colleagues are conducting new studies to build on the basic neuronal architecture identified in the current study. They want to reach a point where these circuits can be reconstructed to stimulate the recovery of motor function central nervous system injuries.

Corticospinal Schematics

Little has been known about how the corticospinal network of nerve connections between the brain and spinal cord are organized and function together. Seemingly simple tasks like reaching or grabbing require precise coordination between sensory and motor information transmitted through these coordinated connections, according to the researchers.

To map this connectivity in the current study, the scientists study these circuits in laboratory mice--taking advantage of similar corticospinal connections in primates, cats, and rodents.

Working initially from previous studies by his research team and others, Yoshida and colleagues were able to track corticospinal connections from the brain's cerebral cortex near the top of the head down to the spinal cord. They also traced the organization and function of corticospinal circuits using mouse genetics, and a viral tracer (a de-armed rabies virus) that allowed investigators to highlight and capture images of these links.

The connections trace down through what's called the brain's internal capsule, then arrive at the caudal medulla of the brain just above the spinal cord. From there they enter the spinal cord, crisscrossing deep inside the spine as they continue to protrude downward and make additional connections.

Yoshida said his team was able to develop a map of corticospinal neurons that control forelimb and sensory nerve impulses. They also identified specific neurons that control different skilled movements.

In these areas, the scientists show how the nerve fibers connect onto certain premotor interneurons and transmit impulses between neurons to trigger skilled movements. This includes nerve fibers that express a transcription factor called Chx10 (a regulator gene that instructs other genes to turn on or off to initiate biological functions).

Chx10 is linked to nervous system function in other parts of the body, including the eyes. When the researchers silenced Chx10 only in the cervical spinal cord, it hampered the animals' ability to reach for food.

The Importance of Sensing

The researchers also highlighted the connections of corticospinal neurons in the forelimb sensory cortex--which control the animals' ability to sense and convert external stimuli into electrical impulses. They said that in contrast to corticospinal neurons in the motor cortex that directly trigger certain skilled movement, corticospinal neurons in the sensory cortex do not connect directly to premotor neurons. Instead, they connect directly to other spinal interneurons that express a gene called Vglut3.

This is important because when the scientist inhibited neurons expressing Vglut3 in the cervical spinal cord, it also caused deficits in the animals' ability to grab and release food pellets, as well as other goal-oriented tasks.

Key collaborators on this study include scientists at the Precursory Research for Embryonic Science and Technology (PRESTO) at the Japan Science and Technology Agency, the Brain Research Institute at Niigata University in Japan and the University of Cincinnati Medical Center.

###

Funding support for the research came in part from: the National Institute of Neurological Disorders and Stroke (NS093002) PRESTO (JST-JPMJPR13M8), the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI 17H04985, 17H05556, 17K19443); a JSPS Postdoctoral Fellowships for Research Abroad, the Foundation for the Promotion of Medical Science, Kato Memorial Bioscience Foundation, Grant-in-Aid from the Tokyo Biochemical Research Foundation, and Japan Heart Foundation Research Grant (MU).

Nick Miller | EurekAlert!

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>