Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Another Piece of the Weight-Control Puzzle

12.08.2008
As scientists continue to investigate the brain's intricate neurocircuitry and its role in maintaining energy balance, they are forming a clearer picture of the myriad events that lead to weight gain and weight loss.

Controlling body weight is a complicated process, as any frustrated dieter might attest. But as scientists continue to investigate the brain’s intricate neurocircuitry and its role in maintaining energy balance, they are forming a clearer picture of the myriad events that lead to weight gain and weight loss.

In the August 10 on-line issue of Nature Neuroscience, a study led by scientists at Beth Israel Deaconess Medical Center (BIDMC) identifies another piece of this complex puzzle, demonstrating that the neurotransmitter GABA --one of the master communicators among neurons – plays a role in controlling energy balance.

“Body weight maintenance is made up of three basic stages,” explains the paper’s senior author Bradford Lowell, MD, PhD, an investigator in the Division of Endocrinology, Diabetes and Metabolism at BIDMC whose laboratory is working to identify the specific neurocircuits responsible for controlling food intake and/or energy through functional neuroanatomical mapping studies.

“In the first stage, the brain receives sensory input from the body [including information provided by circulating hormones such as leptin and ghrelin and from fuels such as glucose and fatty acids],” says Lowell, who is also a Professor of Medicine at Harvard Medical School.

In the second stage, he adds, the brain integrates this sensory information with cues it has received from the environment (such as aromas and other enticements) along with information gathered from the organism’s emotional state. Then, in the final stage, the brain’s neurocircuitry takes over, enabling the brain to make appropriate alterations in food intake and energy expenditure in order to maintain energy balance – and prevent weight gain and obesity.

Previous work had primarily focused on identifying the neuropeptides involved in this process. And indeed, this group of neurotransmitters often proves essential to maintaining energy balance – but not always.

“It is well known that AgRP [Agouti-related protein] neurons play a critical role in feeding and energy balance regulation,” explains Qingchun Tong, PhD, a postdoctoral fellow in the Lowell laboratory and the study’s first author. “However, the deletion of AgRP and NPY [two neuropeptides released from the AgRP neurons] produces little metabolic effect.”

An alternate theory proposed that release of the GABA neurotransmitter was mediating the function of AgRP neurons, an idea that had long been postulated but never examined.

To test this hypothesis, Tong and his colleagues generated a group of mice with disrupted release of GABA specifically from the AgRP neurons. As predicted, the genetically altered mice exhibited profound metabolic changes.

“The mice with AgRP neuron-specific disruption of GABA release were lean, had higher energy expenditure and showed resistance to diet-induced obesity,” says Tong. “We also found that these animals showed reduced food intake response to the hormone ghrelin. This suggests to us that the neurocircuit engaging GABA release from the AgRP neurons mediates at least part of ghrelin’s appetite-stimulating action.”

A series of studies to examine the function of glutamate and GABA release from other groups of neurons are currently underway as investigators continue to dissect the brain’s neurocircuitry.

“As these new findings demonstrate, GABA release is an important component that mediates the function of AgRP neurons,” says Tong. “Discoveries such as this will ultimately help us to design an efficient strategy to tackle the current epidemic of obesity and metabolic disease.”

This work was funded, in part, by grants from the National Institutes of Health and support from the North American Association for the Study of Obesity.

In addition to Lowell and Tong, coauthors include BIDMC investigators Chian-Ping Ye and Juli Jones and University of Texas Southwestern Medical Center investigator Joel Elmquist.

Beth Israel Deaconess Medical Center is a patient care, teaching and research facility of Harvard Medical School and consistently ranks among the top four in National Institutes of Health funding among independent hospitals nationwide. BIDMC is clinically affiliated with the Joslin Diabetes Center and is a research partner of Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox.

Bonnie Prescott | Newswise Science News
Further information:
http://www.bidmc.harvard.edu

More articles from Health and Medicine:

nachricht Discovery shows promise for treating Huntington's Disease
05.08.2020 | Ecole Polytechnique Fédérale de Lausanne

nachricht Carbon monoxide improves endurance performance
05.08.2020 | Universität Bayreuth

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>