Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop a 'time bomb' to fight cardiovascular disease

11.06.2012
In Switzerland, more than 20,000 people (37% of all deaths) die of cardiovascular disease caused by atherosclerosis each year.

Treatment options are currently available to people who suffer from the disease but no drug can target solely the diseased areas, often leading to generalized side effects. Intravenous injection of a vasodilator (a substance that dilates blood vessels), such as nitroglycerin, dilates both the diseased vessels and the rest of our arteries. Blood pressure can thus drop, which would limit the desired increased blood flow generated by vasodilatation of diseased vessels and needed for example during a heart attack.

In order to increase the effectiveness of treatments against atherosclerosis and to reduce side effects, a team of researchers from UNIGE, HUG and the University of Basel have developed nanocontainers having the ability to release their vasodilator content exclusively to diseased areas.

Nanotechnology in medicine

Though no biomarker specific to atherosclerosis has been identified, there is a physical phenomenon inherent to stenosis (the narrowing of blood vessels) known as shear stress. This force results from fluctuations in blood flow induced by the narrowing of the artery and runs parallel to the flow of blood. It is by making use of this phenomenon that the team of researchers has developed a veritable «time bomb», a nanocontainer which, under pressure from the shear stress in stenosed arteries, will release its vasodilator contents.

By rearranging the structure of certain molecules (phospholipids) in classic nanocontainers such as liposome, scientists were able to give them a lenticular shape as opposed to the normal spherical shape. In the form of a lens, the nanocontainer then moves through the healthy arteries without breaking. This new nanocontainer is perfectly stable, except when subjected to the shear stress of stenosed arteries. And that's exactly the intention of this technological advance. The vasodilator content is distributed only to the stenotic arteries, significantly increasing the efficacy of the treatment and reducing side effects. «In brief, we exploited a previously unexplored aspect of an existing technology. This research offers new perspectives in the treatment of patients with cardiovascular disease,» explains Andreas Zumbuehl from the Department of Organic Chemistry at UNIGE.

«Nanomedicine is a discipline stemming from general nanoscience but which orients itself towards medical research. The interdisciplinary collaboration between chemistry, physics, basic science and clinical medicine in a highly technical environment could lead to a new era of research,» states Till Saxer of the Cardiology and General Internal Medicine Departments at HUG.

«The nano component is present in all disciplines, but the most interesting aspect of nanomedicine is its overview allowing the development of clinical products that integrate this global medical point of view from the earliest onset of research projects,» states Bert Müller, Director of the Biomaterials Science Centre (BMC) at Basel.

When chemistry gets involved

How did scientists manage to change the shape of the nanocontainers so that they resemble a lens? By rearranging the structure of molecules, chemists at UNIGE replaced the ester bond that links the two parts of the phospholipid (head and tail), with an amide bond, an organic compound that promotes interaction among phospholipids. Once modified, the molecules are hydrated then heated to form a liquid sphere which will relax to solidify in the form of a lens upon cooling.

The researchers then modelled the cardiovascular system using polymer tubes blocked to varying degrees to represent healthy and stenotic arteries. Next, an artificial extracardiac pump was connected to these arteries in order to reproduce the shear stress induced by the narrowing of the vessels. The nanocontainer was injected into the system and samples were taken from both healthy and stenosed areas. It turns out that the active drug was found in higher concentrations in diseased areas than in non-diseased areas and that the concentrations there were significantly greater than if the drug had been distributed in a homogenous manner.

Andreas Zumbuehl | EurekAlert!
Further information:
http://www.unige.ch

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>