Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop a 'time bomb' to fight cardiovascular disease

11.06.2012
In Switzerland, more than 20,000 people (37% of all deaths) die of cardiovascular disease caused by atherosclerosis each year.

Treatment options are currently available to people who suffer from the disease but no drug can target solely the diseased areas, often leading to generalized side effects. Intravenous injection of a vasodilator (a substance that dilates blood vessels), such as nitroglycerin, dilates both the diseased vessels and the rest of our arteries. Blood pressure can thus drop, which would limit the desired increased blood flow generated by vasodilatation of diseased vessels and needed for example during a heart attack.

In order to increase the effectiveness of treatments against atherosclerosis and to reduce side effects, a team of researchers from UNIGE, HUG and the University of Basel have developed nanocontainers having the ability to release their vasodilator content exclusively to diseased areas.

Nanotechnology in medicine

Though no biomarker specific to atherosclerosis has been identified, there is a physical phenomenon inherent to stenosis (the narrowing of blood vessels) known as shear stress. This force results from fluctuations in blood flow induced by the narrowing of the artery and runs parallel to the flow of blood. It is by making use of this phenomenon that the team of researchers has developed a veritable «time bomb», a nanocontainer which, under pressure from the shear stress in stenosed arteries, will release its vasodilator contents.

By rearranging the structure of certain molecules (phospholipids) in classic nanocontainers such as liposome, scientists were able to give them a lenticular shape as opposed to the normal spherical shape. In the form of a lens, the nanocontainer then moves through the healthy arteries without breaking. This new nanocontainer is perfectly stable, except when subjected to the shear stress of stenosed arteries. And that's exactly the intention of this technological advance. The vasodilator content is distributed only to the stenotic arteries, significantly increasing the efficacy of the treatment and reducing side effects. «In brief, we exploited a previously unexplored aspect of an existing technology. This research offers new perspectives in the treatment of patients with cardiovascular disease,» explains Andreas Zumbuehl from the Department of Organic Chemistry at UNIGE.

«Nanomedicine is a discipline stemming from general nanoscience but which orients itself towards medical research. The interdisciplinary collaboration between chemistry, physics, basic science and clinical medicine in a highly technical environment could lead to a new era of research,» states Till Saxer of the Cardiology and General Internal Medicine Departments at HUG.

«The nano component is present in all disciplines, but the most interesting aspect of nanomedicine is its overview allowing the development of clinical products that integrate this global medical point of view from the earliest onset of research projects,» states Bert Müller, Director of the Biomaterials Science Centre (BMC) at Basel.

When chemistry gets involved

How did scientists manage to change the shape of the nanocontainers so that they resemble a lens? By rearranging the structure of molecules, chemists at UNIGE replaced the ester bond that links the two parts of the phospholipid (head and tail), with an amide bond, an organic compound that promotes interaction among phospholipids. Once modified, the molecules are hydrated then heated to form a liquid sphere which will relax to solidify in the form of a lens upon cooling.

The researchers then modelled the cardiovascular system using polymer tubes blocked to varying degrees to represent healthy and stenotic arteries. Next, an artificial extracardiac pump was connected to these arteries in order to reproduce the shear stress induced by the narrowing of the vessels. The nanocontainer was injected into the system and samples were taken from both healthy and stenosed areas. It turns out that the active drug was found in higher concentrations in diseased areas than in non-diseased areas and that the concentrations there were significantly greater than if the drug had been distributed in a homogenous manner.

Andreas Zumbuehl | EurekAlert!
Further information:
http://www.unige.ch

More articles from Health and Medicine:

nachricht Radioisotope couple for tumor diagnosis and therapy
14.05.2019 | Kanazawa University

nachricht Therapy Optimisation by Analysing the Genome
13.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>