Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dual gene therapy suppresses lung cancer in preclinical test

17.01.2007
Combination gene therapy delivered in lipid-based nanoparticles drastically reduces the number and size of human non-small cell lung cancer tumors in mice, researchers at The University of Texas M. D. Anderson Cancer Center and the University of Texas Southwestern Medical Center report in the Jan. 15 edition of Cancer Research.

Two tumor-suppressing genes given intravenously reduced cancer separately but had their most powerful effect when administered together, cutting the number of tumors per mouse by 75 percent and the weight of tumors by 80 percent.

"In cancer treatment we have combination chemotherapy, and we also combine different modes of therapy - surgery, radiation and chemotherapy. Now you've got the possibility of combined targeted gene therapy," said Jack Roth, M.D., professor and chair of the M. D. Anderson Department of Thoracic and Cardiovascular Surgery and a senior researcher on the project.

The genes wrapped in the nanoparticles were p53, a well-known tumor suppressor that works by causing defective cells to commit suicide and is often shut down or defective in cancer cells, and FUS1, a tumor-suppressor discovered by the research group that is deficient in most human lung cancers. Each nanoparticle carried one of the two genes.

The Cancer Research paper reports that FUS1 works with p53 to force the lung cancer cells to kill themselves - a process known as apoptosis.

Further analysis showed that the combination achieved greater cell suicide because FUS1 suppresses a gene that expresses a protein known to rapidly degrade p53, says senior author Lin Ji, Ph.D., M. D. Anderson associate professor of thoracic and cardiovascular surgery.

The FUS1/p53 combination also activates a cell suicide pathway based in the cells' mitochondria, their energy powerhouse.

Lab experiments first showed that the gene combination cut the number of viable cells in four lines of human non-small cell lung cancer by 70 to 80 percent 48 hours after treatment while leaving a control group of normal cells unaffected. The cancer cell lines treated with the gene combination had 2 to 3 times more cells killed by apoptosis than either gene nanoparticle had individually. The research team then confirmed these findings in the mouse studies.

The nanoparticle delivery system, which the researchers have used for years, consists of a plasmid gene expression cassette loaded with DNA that encodes either the p53 or the FUS1 protein. This is wrapped tightly in a form of cholesterol to protect it from the body's defense mechanisms. "You can't deliver naked DNA for cancer therapy," Ji says.

The nanoparticles accumulate mainly in the lungs, particularly in the tumors, Ji says. The positively charged nanoparticles are delivered to the negatively charged cancer cell membrane and taken into the cell, where the genes repeatedly express either p53 or FUS1 tumor-suppressing proteins.

Roth expects the research team to advance combination therapies to clinical trials in the coming years, either of genes or of genes with other biologic or chemotherapy agents.

"We certainly hope this approach will be more effective but we also think it's likely to be much less toxic, with fewer side effects, than other types of combined cancer therapy," Roth says. "These genes don't have much effect on normal tissue or normal cells when they are overexpressed. It's really just cancer cells where they seem to have their effect. Ultimately, the usefulness of this approach has to be proven in clinical trials."

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>