Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic medicine – just over the horizon?

21.11.2006
Genetic medicine promises a revolution in health care. But major obstacles remain, not least the complexity of extrapolating clinical practice from organic molecules. But the INFOBIOMED team hopes to link biological and medical informatics in a bid to make genetic medicine a reality.

The day you are born, your birth certificate carries a detailed genetic profile showing your predisposition to allergies and certain diseases, your health risks and information useful to minimise your chances of falling sick. With all this information so early on, you and your health professional can take steps to minimise the effects of disease, before age-related illnesses begin to develop 60 years on.

In the meantime, if you do fall sick, doctors can better diagnose and tailor treatment and drugs to your exact genetic profile, with a greater chance of success. The era of genetic medicine is upon us.

Yet problems remain before the genetic revolution can move from research labs to patient benefit. The human genome is immensely complicated, and extrapolating clinical practice from genetic data is fraught with problems. Medical doctors and molecular scientists talk a different language; their expertise has a different focus and their computers can even use incompatible databases.

Which explains why one project team is working on this very problem. The partners in INFOBIOMED are attempting to link biological informatics with medical informatics, to match observed laboratory phenomena with clinical outcomes.

"Bioinformatics works mainly with data on a molecular and DNA level, while medical practice is more centred on 'higher' data levels for human organs or tissues. There's a big gulf between the two," notes project manager Carlos Diaz of Fundació IMIM in Barcelona. "We want these two information systems to develop a common ground between what happens in your DNA and what happens with disease."

INFOBIOMED has already had a huge impact since its beginnings in 2004. The doctors, scientists and IT experts involved in the project are now talking a common language and working on shared problems, something which is a major step forward.

The project also put students from different disciplines into a house together during one week, split them into teams and gave them problems to work on jointly. "It was like a scientific 'Big Brother', as all the prejudice and barriers posed by different languages and traditions were exposed", he remarks.

But that's not the most difficult problem. Some diseases can be associated in a relatively simple way with a specific genetic anomaly. But most diseases depend upon a huge variety of genes, plus many other factors – lifestyle, environment, even chance. The problem of understanding the mechanisms of disease is extremely complex.

"It is difficult to extrapolate clinical practice from genetic information, but we hope to provide a feedback loop, through the combined informatics systems – so-called 'biomedical informatics' – so that doctors and geneticists can find links between genomics and medical outcomes," notes Diaz.

Over time this will develop a picture of the relationship between the two. It could also mean that drugs are tailored specifically to individual patients, or groups of patients, with greater odds on a successful outcome.

But that is for the future. Yet INFOBIOMED has already taken some major steps toward that horizon. It has produced reports on the state-of-the-art in biomedical informatics, and developed databases and software that link both bioinformatics and medical informatics in a meaningful way.

The project partners have also developed pilot applications in four medical areas: pharmaco-informatics, genomics and infection, genomics and chronic inflammation, and genomics and hereditary colon cancer.

"Using advanced biomedical informatics approaches, the pharmaco-informatics study found a previously unsuspected bio-molecule that could play a key role in the development of the Complex Regional Pain Syndrome, a painful disorder affecting one or more extremities of the body, that ultimately can even lead to amputation. The results obtained could serve as basis for new drug treatments, and could also have a relationship with other inflammatory diseases," says Diaz. "The method followed in the research could be applied to other complex diseases as well."

INFOBIOMED ends in July 2007, but Diaz hopes they will find a way to continue the work. "We're currently looking at options – we could for example start a professional society to run a journal, with regular meetings to move biomedical informatics forward," he says.

The team is also interested to hear from companies, investors or partners who have an interest in the area. Many organisations could find the project results useful – health, pharma or informatics companies, or institutes with specialist departments in this field.

As an added bonus, in the very long term genetic medicine could mean cheap healthcare, as prevention begins to trump cure. The era of molecular genetic medicine could be just over the horizon.

Contact:
Carlos Díaz
Research Group on Biomedical Informatics (GRIB)
Fundació IMIM
Doctor Aiguader, 88
E-08003 Barcelona
Spain
Tel: +34 93 3160518 or +34 93 3160523
Email: cmdiaz@imim.es or info@infobiomed.org
Source: Based on information from INFOBIOMED

Jernett Karensen | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>