Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of post-stimulus activated release implies new mechanisms for dopamine release

17.10.2006
The neurotransmitter dopamine continues to be released for nearly an hour after neurons are stimulated, suggesting the existence of secondary mechanisms that allow for sustained availability of dopamine in different regions of the brain including areas critical for memory consolidation, drug induced plasticity and maintaining active networks during working memory, according to a University of Pittsburgh study being presented today at the 36th Annual Meeting of the Society for Neuroscience, held at the Georgia World Congress Center in Atlanta.

Determining the mechanisms that cause what is being called "post-stimulus activated release" and how they maintain dopamine levels could have important implications for understanding and treating neurological and psychiatric disorders caused by an imbalance of dopamine function including schizophrenia, attention deficit hyperactivity disorder, Tourette's syndrome, Parkinson's disease and addiction.

According to Bita Moghaddam, Ph.D., professor of neuroscience and psychiatry, who led the study, in addition to its clinical benefits, post-stimulus activated release can be used to explain how brief events that activate neurons for short periods of time can influence brain function long after the events. For example, it can be used to explain how smelling freshly baked cookies could evoke childhood memories of spending time with a beloved grandparent, leading a person to reminisce long after the smell is gone and take the unplanned or impulsive action of baking or buying cookies.

Dopamine is a neurotransmitter associated with learning and memory, motor control, reward perception and executive functions such as working memory, behavioral flexibility and decision making. When a novel or salient stimulus occurs, the dopamine neurons in the brain increase their firing rate, boosting the release of dopamine. The dopamine is diffused into the extracellular space of the brain until it can be transported or metabolized.

In a rat model, the researchers have been attempting to understand increases in extracellular levels of dopamine during behaviorally active states, such as completing a cognitive task or experiencing stressful situations and in response to the electrical stimulation of neurons. In their studies, they have observed that dopamine levels remain above the baseline long after neurons had been stimulated – from five to 20 minutes in the ventral tegmental area (VTA) and 40 to 100 minutes in the nucleus accumbens and prefrontal cortex.

Attempting to discern the cause of the elevated levels, researchers stimulated the VTA of the brain of a rat model by using an electrode. The VTA is a nucleus in the midbrain where dopamine neurons are located. After stimulating the neurons, the researchers measured the amount of dopamine in the extracellular fluid of the nucleus accumbens and prefrontal cortex – two areas where the VTA is known to send signals. They found that dopamine levels increased during stimulation, and remained elevated for an hour after stimulation.

Dopamine levels wane as dopamine is taken back into cells by an active transport system. Yet this active transport system is not abundant in the ventral striatum and prefrontal cortex areas, leading researchers to think that perhaps the dopamine levels remained elevated due to an excess that had yet to be absorbed. To test this hypothesis, they applied tetrodotoxin (TTX), a neurotoxin that blocks the active release of dopamine, to the nucleus accumbens and prefrontal cortex. TTX caused dopamine levels to drop, indicating that the dopamine levels remained elevated because dopamine was being actively released after the neurons fired and not because there was residual dopamine in the brain.

Dr. Moghaddam and colleagues are currently conducting experiments in efforts to identify the exact mechanism causing post-stimulus activated release.

Jocelyn Uhl | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>