Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spleen may be target of successful therapy for lupus

15.09.2006
Researchers at the University of California, San Diego (UCSD) School of Medicine have found clues that might lead to better treatment of lupus, showing that the spleen is the likely source of cells that are the origin of the disease. Michael Karin, Ph.D., professor pharmacology in UCSD’s Laboratory of Gene Regulation and Signal Transduction, led the study to be published on line September 14 in advance of publication in the September issue of the journal Immunity.

The researchers worked with transgenic mouse models that were engineered to overproduce a special cytokine – a hormone which regulates immunity – called BAFF, a B-cell activating factor that is elevated in patients with lupus and other autoimmune diseases. The B cells are responsible for the production of antibodies in the body. Mice overproducing BAFF develop systemic lupus erythematosis (SLE)-like disease, very similar to human lupus, which is estimated to affect one in a thousand Americans, 90 percent of them women.

The research study showed that that a compartment of the spleen called the marginal zone is where the majority of autoreactive B cells are found. The scientists transplanted immune cells from the spleen's marginal zone in the mice with lupus into mice without their own B cells, and found that they immediately gave rise to pathogenic antibodies.

When the enlarged marginal zone cell pool in the mouse model was removed or reduced, the disease was prevented or strongly diminished.

"The study proved without a doubt that the transplanted B cells were the source of lupus auto-antibodies," said Gregg Silverman, M.D. professor of medicine in UCSD’s Translational Oncology Program and contributor to the paper. "Identifying the spleen’s marginal zone as the likely source of these tissue-damaging antibodies gives us important insights into the cause of lupus as well as a target for new therapies."

The researchers also studied B-cell activation in two signalling pathways, called the classical and alternative NF-ÿB pathways, that contribute to the development of lupus. The scientists discovered that while each pathway is required for the pathogenesis of antibodies that cause the autoimmune disease, neither works alone.

"Either pathway would be a suitable target for therapy,” said Karin, whose lab first identified the two NF-ÿB pathways several years ago. "Both are critical to production of pathogenic B cells that destroy the body's own cells in lupus." However, he added that targeting one of the NF-ÿB pathways called the classical pathway would eliminate B cells throughout the entire body. This is the drawback of other therapies currently recommended for lupus patients, as they destroy the body’s immune cells which are needed to fight off other infection.

Karin added that genetic manipulation of the animals, or the timing of the splenectomy in the cycle of the lupus-like disease might have contributed to the outcome. Therefore more research is needed to draw a definite conclusion, though their studies ruled out the lymph nodes or the bone marrow – where B cells are born – as contributors to the effect.

"The study tells us important things about the pathogenesis of disease in a mouse model that is very close to human lupus," Karin said. In mice, as in humans, the disease leads to overproduction of anti-DNA antibodies and immune deposits in the kidneys, which can result in fatal kidney damage.

Lupus is a chronic autoimmune disease that, for unknown reasons, causes the immune system to attack the body's own tissue and organs, including the joints, kidneys, heart, lungs, brain, blood, or skin. Difficult to diagnose and treat, patients may see several physicians before learning they have lupus. The disease is much more common in women than men, usually is first diagnosed between the ages of 15 and 44 years, and is two to three times more common in persons of color. Patients often take many different medications to control lupus, which has symptoms ranging from mild to life-threatening, including aching or swollen joints, skin rashes, kidney damage, anemia and hair loss.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>