Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers make a major strategic breakthrough in controling the AIDS virus

24.08.2006
Dr. Rafick-Pierre Sékaly and his team succeed in preventing the HIV virus from making immune system cells dysfunctional

A team of researchers from the Université de Montréal and the Centre hospitalier de l'Université de Montréal (CHUM) have announced an important breakthrough in fighting the human immunodeficiency virus (HIV). For the first time, scientists have identified a defect in the immune response to HIV and found a way to correct the flaw. Dr. Rafick-Pierre Sékaly, an eminent researcher in cell biology, immunology, and virology, has confirmed the identification of a new therapeutic target (the PD-1 protein) that restores the function of the T cells whose role is to eliminate cells infected with the virus. This constitutes a major breakthrough, opening new prospects for the development of therapeutic strategies for controlling HIV infection. The research findings appear in today's issue of the journal Nature Medicine.

Dr. Sékaly explained that "immune system cells made non-functional by HIV can be identified by the presence of a protein that is significantly overexpressed when infected by the virus." In fact, high levels of the protein are associated with a more serious dysfunction. "The most important discovery made in this study arises from the fact that by stimulating this protein, we succeeded in preventing the virus from making immune system cells dysfunctional," he added.

The findings were simultaneously reproduced by two other laboratories – the labs headed by Dr. Bruce Walker at Harvard and Dr. Richard Koup at the NIH. "It's a rare occurrence for three teams to work together on attacking a major problem. Up until now, the virus has been more or less invincible. By combining our efforts, we found the missing link that may enable us to defeat the virus," noted Dr. Sékaly. Discussions with partners are also underway to translate these research findings into clinical trials, which could start during the coming year.

Thanks to the joint efforts of the Université de Montréal, the CHUM Research Centre, Génome Québec, Genome Canada, the Canadian Institutes of Health Research (CIHR), the Canada Foundation for Innovation, the NIH, and the Fonds de la recherche en santé du Québec (FRSQ), Quebec continues to show great leadership in the life sciences.

Paul L'Archevêque and Martin Godbout, the presidents of Génome Québec and Genome Canada respectively, saluted the vision of the research team and the importance for Quebec and Canada of continuing to invest in genomics research. "The $14 million invested in this project certainly played a role in accelerating the researchers' work, and in helping Montreal to remain competitive on the international scene," noted the agency heads, adding that Dr. Sékaly's team was the first in the world to present the findings of this major study.

"The results of Dr. Sekaly's study represent an important step in the development of a new therapeutic approach in the fight against HIV," said Dr. Alan Bernstein, CIHR President. "This study is a compelling example of the excellence of Canadian health researchers and of Canada's contribution to the world's response to the HIV-AIDS pandemic."

"This important discovery is a powerful example of what can be achieved through partnership," added Dr. Eliot Phillipson, President and CEO of the Canada Foundation for Innovation. "Canada is proud to have researchers of Dr. Sékaly's calibre keeping our country at the forefront of the global fight against HIV-AIDS."

Dr. Mark Wainberg, Co-Director of the FRSQ-AIDS and infectious diseases Network and Co-Chair of the 16th World AIDS Conference held in Toronto last week, congratulated Dr. Sékaly and his team: "This scientific breakthrough is a giant step in the fight against AIDS. It is particularly interesting to see that some of the best research teams are working together to stop this terrible curse."

Sophie Langlois | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>