Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insulin pathway component explains insulin resistance, age-associated metabolic syndrome

09.08.2006
Fly genetics reveal key workings of Atkins Diet

Metabolic syndrome, an aging-associated group of disorders that includes insulin resistance, heart disease and high lipid levels, may be treatable thanks to a newly discovered role for a regulatory gene, according to a team of scientists at the Burnham Institute for Medical Research.

In addition, the scientists found that this single gene may contribute to the body's responses to caloric restriction and may explain some aspects of the Atkins Diet.

The gene's new function was discovered in Drosophila fruit flies; previously it was associated solely with the control of growth. Until now, how the gene regulates insulin, as well as other symptoms of metabolic syndrome, was largely unknown. The study was conducted by Sean Oldham, Ph.D., assistant professor, and his colleagues at the Burnham and the National Institute on Alcoholism and Alcohol Abuse. Oldham's findings appear in the journal Cell Metabolism to be released on August 8th.

Using fruit flies bred with a newly created mutant form of the gene TOR (short for target of rapamycin), Oldham and his colleagues were able to determine how the TOR pathway interacted with other important regulators of insulin, glucose and lipid metabolism.

TOR is an ancient gene, found in nearly all animal and plant cells. The researchers discovered that their new mutant fly reduced TOR function, allowing them to observe what happens when TOR's influence is removed.

Reductions in TOR function lowered glucose and lipid levels in the body. They also blocked the function of another important insulin regulator, a factor called FOXO, which is known to be a critical mediator of insulin signals and therefore glucose and lipid metabolism. In addition, flies with the mutated form of TOR had longer life spans than control flies.

"It has been unclear how TOR signaling affects the insulin pathway," said Oldham. "Our study adds another dimension to TOR's activity by revealing unexpected and novel levels of beneficial regulation of insulin metabolism, by reducing insulin resistance. This study provides the first details of how TOR may regulate energy homeostasis and responses to aging, in particular the coordination of weight reduction effects caused by caloric restriction and, in humans, it may explain the effects of the Atkins diet. It suggests that reducing TOR function could lead to a possible treatment for any or all symptoms of metabolic syndrome and insulin resistance."

Oldham's group, in collaboration with Dr. Rolf Bodmer at Burnham, showed that reducing TOR function also blocks the age-dependent decline of heart function, providing a partial explanation for why excess calories from overeating can lead to resistance to insulin's ability to process sugars and may contribute to reduced heart function.

Dr. Oldham and his colleagues are continuing their search to understand how TOR mediates caloric restriction, aging and other effects on insulin signaling and metabolism. They want to understand TOR's role in the relationship between growth, metabolism and aging, both in healthy individuals and individuals with metabolic diseases. The researchers also are screening possible drugs that could treat metabolic syndrome by reducing TOR function.

"This study provides the first direct evidence that reducing TOR function could be clinically beneficial to counter insulin resistance, metabolic syndrome and diabetes," said Oldham. "We believe further studies on fruit flies are invaluable to discovering more details about this pathway, and will give us indispensable insight into pathological aspects of aging and senescence."

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham.org

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>