Cystic Fibrosis Study Points to Potential Treatment

Researchers have discovered the mechanism by which the genetic defect underlying cystic fibrosis (CF) leads to fatal bacterial colonization of the lungs. The new findings, published today in the early online edition of the Proceedings of the National Academy of Sciences, suggest that an aerosol treatment aimed at balancing pH in lung cells could be developed to stave off or delay such infections.

The most common inherited lethal disorder in Caucasians, CF stems from mutations in a gene that encodes the so-called cystic fibrosis transmembrane conductance regulator (CFTR) protein. Although scientists have known that for some time, exactly how the dysfunctional protein relates to the chronic respiratory infections that characterize the disease has remained a mystery. Enter Jens Poschet of the University of New Mexico and colleagues, who found that the defect results in the excess production of acid in lung cells. This, the team determined, prevents the cells from attaching key sugar molecules to certain proteins dotting their surfaces. The absence of those sugars, in turn, enables bacteria such as Pseudomonas aeruginosa to latch onto the cells much more easily—a prelude to infection.

Importantly, when the researchers restored normal acidity to such cells in vitro, the bacteria could no longer stick to them. “This was an exciting discovery to us, because in the test tube at least we can correct the deficiency with simple maneuvers,” team member Vojo Deretic of the University of New Mexico remarks. “We already have ion pump inhibitors and antacids for treating heartburn,” he adds. “If we can design similar compounds to go to the lungs, we might have a simple solution to greatly improve the health of CF patients.”

Media Contact

Kate Wong Scientific American

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors