Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic treadmill training helps retrain brain, improves walking

30.11.2005


People who have suffered partial paralysis from spinal-cord injury show increased activity in the part of the brain responsible for muscle movement and motor learning after 12 weeks of training on a robotic treadmill, researchers at UT Southwestern Medical Center have found.

Their study, which is currently online and will be published in the December issue of the journal Neurorehabilitation and Neural Repair, is the first to demonstrate that locomotor training can promote activation in the parts of the brain involved in walking in spinal-cord injury patients, said lead author Dr. Patricia Winchester, chairwoman of physical therapy at UT Southwestern Allied Health Sciences School. The results suggest that rehabilitation strategies could be designed "based in part upon whether or not they engage the critical areas of the brain necessary for walking," said Dr. Winchester.

Additionally, the findings suggest that a diagnostic technique called functional magnetic resonance imaging (fMRI), used by the researchers to measure the activation of these brain areas, "may be useful in predicting which individuals will benefit from a particular intervention" after spinal-cord injury, Dr. Winchester said.



David Cunniff, one of the study patients, described his improvements as "quite dramatic." He said within about a month of training on the robotic treadmill, he stood up out of his wheelchair for the first time. "I had no idea I’d be able to do that," he said. Prior to the training, he could only stand with assistance and could not walk. Today he uses only a cane to move about. "I don’t think I could have ever gotten to the place I am without the Lokomat robotic device and UT Southwestern," Mr. Cunniff said.

The study followed four spinal-cord injury patients with varying degrees of paralysis. All underwent rehabilitation therapy using a computerized treadmill called the Lokomat Driven Gait Orthosis. The device supports the weight of the patient in a harness, while robotic devices control their limb movements on a treadmill. During training, the patient watches his or her progress on a real-time computer monitor. By providing sensory information to the spinal cord and brain, the device signals the body to step again.

The study participants were assessed before and after completion of the treadmill training with fMRI. Pictures of blood flow in the brain during body movement were compared to fMRI images taken when the patients were at rest.

After training, those patients who showed the most progress in completing a simple task - flexing their ankles - showed increased activity in the portion of their brains called the cerebellum while undergoing fMRI. However, only those patients who showed a "substantial" change in the cerebellum during the task improved their ability to walk.

Of the four patients, Mr. Cunniff and another man who could walk with a cane after the training had the greatest changes in activation of the cerebellum. Prior to training, the second man required a walker, a brace and physical assistance to walk.

Of the other two patients, one was able to walk with a walker and some physical assistance after the 12-week Lokomat training. Before the training, he had been unable to walk or stand. The fourth patient could not walk before or after training, but nonetheless showed some increased brain activation - but not in the cerebellum - after using the Lokomat.

"The study suggests that the cerebellum plays an important role in recovery of walking," said Dr. Winchester.

The researchers have now enrolled more than 25 study patients. The next step in the research is to use single positron emission computerized tomography (SPECT) to look at the patient’s blood flow in the brain during the performance of a task. SPECT involves the administration of a radioactive dye that migrates to the patient’s brain and produces a three-dimensional image of hot spots of brain activity.

Other UT Southwestern researchers involved in the study were Dr. Roderick McColl, associate professor of radiology; Dr. Ross Querry, assistant professor of physical therapy; Nathan Foreman and James Mosby, faculty associates in physical therapy; Dr. Keith Tansey, assistant professor of neurology and physical medicine and rehabilitation and director of the Southwestern Spinal Cord Injury Program; and Dr. Jon Williamson, professor of physical therapy.

The study was supported in part by the Western Rehabilitation Research Network.

Connie Piloto | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>