Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IT takes steps to help people with joint disorders

10.12.2004


A new generation of devices to help people with joint disorders walk with ease and comfort are becoming a reality thanks to the work of GAIT, which is creating the world’s first ‘intelligent’ mechanical devices to support knee and ankle joints.



Due to end in August next year, the 36-month IST programme project is developing the most advanced leg supports designed to date, combining biomechanics with information technologies to produce more comfortable and effective devices that could benefit millions of people across Europe.

“The orthoses we are working with are apparatus that are attached to the leg to support the knees and ankles of people who have joint dysfunctions or lack muscle strength,” explains project coordinator José Luis Pons at the Instituto de Automática Industrial (IAI) in Spain. “Traditionally they [orthoses] are purely mechanical devices that provide rigidity to the leg when a patient is standing and allow it to flex when they are walking.”


Traditional devices, which rely exclusively on mechanical components, are often uncomfortable to wear and though they provide necessary support they do not necessarily allow patients to walk normally and with ease. The four GAIT partners are overcoming those problems by incorporating IT into orthoses, creating intelligent devices that adapt to the way patients’ move and the activities they perform.

Added intelligence through IT

“The orthoses we are designing are unique because they contain electronic sensors and actuators to monitor joint movement and adapt the orthosis to it,” Pons says.

Each leg orthosis contains two sets of sensors, one to measure the force being exerted by the patient’s movements on the joint and the other to determine the pressure being exerted on the patient’s leg by the orthosis itself. The actuators use the data obtained from the sensors to set and reset the movement parameters of the mechanical components of the orthosis, thereby allowing the patient to move more naturally.

“Without the incorporation of sensors and actuators, traditional orthoses often cause people to walk abnormally resulting in higher energy use and greater discomfort, something that is a significant problem especially for the elderly,” Pons notes. “With this intelligent system patients should be able to move more naturally because the device can react to the activities they are performing, providing them with greater comfort regardless of whether they are sitting, standing, walking or going up stairs.”

Besides giving the patient support, the mechanical components of the orthosis are designed to assist movement by acting much like a healthy joint, returning the energy from the patient’s stride to the leg and reducing the restrictions to movement. The sensors also monitor the comfort levels of the patient, a critically important issue given that orthoses are often attached to patients’ legs for long periods of time.

“Because orthotic devices are attached tightly around the joints it is important that they are set correctly to ensure maximum comfort and reduce the risk of friction which could cause ulcers and sores when the patient sweats or when the weather is hot and humid,” the coordinator explains.

All the data collected by the sensors are stored in microchips in the orthoses which can be accessed and controlled wirelessly by doctors. The measurements allow specialists to accurately monitor how well the patient is responding to treatment and to adjust the movement parameters of the device with high precision and therefore better adapt it to patients’ needs.

Prototypes take steps towards expanding market

The project partners have so far developed several prototypes of their intelligent orthoses and have tested them on healthy people. According to Pons, the project is planning to run clinical trials with around a dozen patients in Spain and The Netherlands from next March as one of the final steps toward developing a commercially available variant of the system.

The project coordinator expects the GAIT devices to be particularly beneficial to anyone with movement problems caused by neurological disorders or diseases such as arthritis, polio or even strokes. In Europe alone more than 100 million people are estimated to suffer from some form of arthritis in many cases affecting their knee and ankle joints, making it one of the leading causes of disability across the continent.

“A preliminary evaluation of the market shows that these orthoses could benefit a huge number of people of any age and with a wide range of disabilities,” Pons says. “In addition, because Europe has an ageing population the incidence of age-related disabilities, such as arthritis, is likely to increase.”

With GAIT arthritis sufferers and people with other joint and muscle disorders are likely to regain much of the freedom of movement their disability has claimed from them, potentially allowing millions of people to live a more comfortable and active life.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>