Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising New Directions for Gallstone Treatment

23.11.2004


Polarizing light microscopy of gallbladder bile shows the deposition of cholesterol crystals, which can form gallstones under the right biochemical conditions. Image: Courtesy of David Mangelsdorf/HHMI at UT Southwestern Medical Center


A promising experimental compound prevents cholesterol gallstone disease in mice by stimulating the biochemical pathway that controls bile acid secretion by the liver, according to new studies by Howard Hughes Medical Institute researchers.

The findings suggest new approaches to developing drugs to prevent the disease, which afflicts some 20 million people a year. The studies also propose novel strategies for developing diagnostic tests to identify people with a genetically increased risk for developing gallstones.

A research team led by David J. Mangelsdorf, a Howard Hughes Medical Institute (HHMI) investigator at the University of Texas Southwestern Medical Center at Dallas, published its findings November 21, 2004, in the advance online version of the journal Nature Medicine. Co-authors of the paper included HHMI research associate Antonio Moschetta and Angie Bookout in Mangelsdorf’s laboratory.



“What we saw was remarkable,” said Mangelsdorf. “After just five to seven days of treatment, these animals, which were on a diet that would normally produce cholesterol gallstone disease, showed no trace of the disease.”

Gallstones are formed by a disruption in the normal balance of bile acids and phospholipids that are pumped from the liver into the gall bladder. Bile then becomes supersaturated with cholesterol, which is still being pumped into the bile under control of another metabolic pathway. This supersaturation causes the cholesterol to precipitate as crystals, which, under conditions created by the chemical imbalance, can form gallstones. The subsequent change in biochemical conditions and gallstone formation then triggers inflammation, which is the major symptom of patients suffering from cholesterol gallstone disease (CGD).

In their studies, the researchers sought to determine the role of a protein known as farnesoid X receptor (FXR), which controls genes whose proteins regulate the transport of bile acids and phospholipids from the liver into the gallbladder. Previous studies had indicated that FXR’s activity is low in strains of mice that are more susceptible to gallstone disease.

To study FXR’s function, the researchers used a knockout mouse that lacked the FXR gene. They then fed the mice a “lithogenic” diet, which is designed to induce gallstone formation because it is high in cholesterol and other components of bile.

Mice are good models for CGD, said Mangelsdorf, because mice and humans have the same genetic regulatory pathways to control the components of bile. Also, the mouse version of CGD physiologically mimics the disease that is observed in humans.

The researchers’ analyses of bile components in the knockout mice revealed cholesterol saturation and lower levels of biliary lipids, resulting in cholesterol crystals — conditions that closely matched those seen in humans with CGD. They also found that the bile acids created the same hydrophobic conditions and inflammation that are hallmarks of the human disease.

Finally, the researchers measured the activity of genes known to be regulated by FXR in the knockout mice. Among these, they found low activity in those involved in the transportation of lipid components of bile. “Once we had established that the FXR-deficient animals were much more susceptible than normal animals to getting all the sequelae of CGD, we decided to explore the effects of enhancing FXR activity in a strain of mouse that was known to have FXR, but which was also susceptible to the disease,” said Mangelsdorf. “We wanted to determine whether such a drug could reestablish the proper equilibrium of the bile components.” To do this, the researchers gave CGD-susceptible mice, which were fed a lithogenic diet, a synthetic compound — code-named GW4064 — known to mimic the natural chemical that switches on FXR.

Mangelsdorf said the compound’s effects were dramatic. “Their cholesterol saturation, bile lipids, and bile hydrophobicity were normal. And they showed no cholesterol crystal precipitation or inflammation,” he said. In contrast, susceptible mice that did not receive GW4064 showed evidence of gallstone formation. Mangelsdorf said the studies also showed that FXR-knockout mice - in which the drug was not expected to work - developed CGD more rapidly than the susceptible mice. “While we have not shown in this study that the drug that activates FXR cures the disease once it starts, it does prevent gallstones from occurring,” said Mangelsdorf. Although further studies will be needed to determine whether the FXR-activating drug could dissolve gallstones, their findings have clinical implications for both diagnosis and prevention of CGD, he said.

“Humans are known to have a genetic component to risk of CGD that has never been identified,” he said. “While surgical removal of the gallbladder will remain the major treatment for existing CGD, if we can identify those at genetic risk, we might be able to prevent the disease. The lack of FXR might well be a diagnostic marker for genetic predisposition to CGD.”

Also promising, said Mangelsdorf, is the potential for such a drug to prevent pancreatic inflammation and “microlithiasis” in people who have had their gallbladders removed because of gallstones. In this disorder, a sludge of cholesterol-supersaturated bile inflames the bile duct because of its abnormal properties. By restoring the normal properties of bile, the drug would render it less viscous and inflammatory.

While the drug used in the experiments is an expensive experimental compound, said Mangelsdorf, “I have no doubt that the pharmaceutical industry will use these findings as a basis for commercial drug development, provided there are no serious side-effects in humans.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>