Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nerve Navigation Findings Prompt New Direction for Spinal Cord Research

26.10.2004


A piece of the puzzle of how nerves find their way across the midline of the brain and spinal cord in a developing embryo has been found by Medical College of Georgia researchers.



They have found that an enzyme called focal adhesion kinase tells the arm-like extension of a neuron to cross the midline of the spinal cord, says Dr. Wen-Cheng Xiong, developmental neurobiologist and lead author on the paper in the November issue of Nature Neuroscience. After crossing, the axon becomes part of the complex network that enables the right side of the brain to control the left side of the body and vice versa.

The finding helps explain normal development of the nervous systems and provides a new target in the search for ways to re-establish connections -- and the movement and feeling they enable -- lost to spinal cord injuries. “This kinase plays a role in helping direct axon movement across the spinal cord during development,” Dr. Xiong says. “How it does that is one of the questions we hope to answer next. We still have a lot of questions.” Among those is why this mechanism doesn’t seem to work after development is complete. “If the spinal cord is injured, why doesn’t it re-cross that boundary?” she says. “Why are these molecules not functioning well in the adult?”


Focal adhesion kinase already is a hot topic among scientists studying how cells migrate and how tumor cells spread. Now, Dr. Xiong and her collaborators have found the enzyme also plays an important role in central nervous system development. She explains that for axons to journey across the spinal cord, floor plate cells along this natural midline of the developing body secrete a guidance or cue factor called netrin-1. “If this molecule is deleted, this axon cannot cross. It just stays on this side” and the developing embryo will die, a testimony to netrin’s expansive role in getting cells where they need to be. “This factor plays a critical role for nearly all the neurons to cross the midline, even in the cortex or hippocampus of the brain,” Dr. Xiong says.

A receptor on the axon called DCC, or Deleted in Colon Cancer, responds to the signal from netrin. But why the axon knows to move in a certain direction once it sees that signal was an unknown, Dr. Xiong says. The researchers have now found that once this receptor binds to netrin, focal adhesion kinase is activated that tells the axon to reorganize its structure or cytoskeleton and the restructured axon knows how to move. When they delete the kinase, the axon doesn’t make the proper journey or the proper connection.

Developing axons can sense and navigate their environment but how the two functions work together to result in the axon getting where it needs to be is poorly understood, Dr. Xiong says. “Everybody in the developmental neurobiology field is wondering what is the mechanism, how the neuron, once it senses the environment, couples with the motor activity. This provides information for that kind of puzzle,” she says of the newly published work.

The researchers are looking for other molecules that also play a role in directing axonal growth. “We have lots of information about how this molecule talks with other molecules,” Dr. Xiong says. “We just need to get a system to figure out how they talk to each other.” She’s also moving toward an injury model to see what happens to this molecular talk after a spinal cord injury. “We know this factor can turn on but we don’t know how it turns on. If you sever the spinal cord, the important crossing of the axon is gone. Right now, we don’t know how to make it go back.”

Drs. Xiong’s MCG collaborators on the study include her husband, Dr. Lin Mei, also a developmental neurobiologist; research technician Zhu Feng and graduate student Qiang Wang as well as researchers at the University of Alabama at Birmingham; Johns Hopkins University School of Medicine; and Washington University School of Medicine.

Her research is funded by the National Institutes of Health.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>