Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique for thyroid cancer therapy eliminates many side effects

20.09.2004


Differentiated thyroid cancer, the most common form of thyroid cancer, is one of the success stories in the war on cancer. Since the advent of radioiodine therapy, it has been considered one of the most curable cancers. On the downside, current treatment involves taking patients off their thyroid medication. This can lead to serious side effects including symptoms of hypothyroidism, an unbalanced metabolic state that can induce fatigue, depression, and other unpleasant conditions.



Bart de Keizer, MD, and a team from the University Medical Center in Utrecht, The Netherlands, and Ghent University Hospital, Belgium, reported in the September issue of The Journal of Nuclear Medicine, on a new technique that allows patients to maintain their normal course of thyroid medication prior to and during radioiodine therapy. The new technique avoids the problems of hypothyroidism, and levels of radiation in the blood and bone marrow remain well below the accepted safety thresholds during therapy.

Currently, thyroid cancer patients who have had their thyroid removed are treated with radioactive iodine, which effectively zeros in on and kills any remaining cancerous thyroid cells. But prior to radioiodine treatment, the patient must be taken off thyroid hormone replacement medication for up to 6 weeks. The withdrawal of thyroid medication signals the body to produce thyroid stimulating hormone (THS). TSH causes any remaining or metastasized thyroid cells to quickly absorb the radioactive iodine when it is administered, in effect forcing the cancerous cells to absorb lethal radioactive molecules that are largely ignored by other cells in the body.


By using a genetically engineered version of the natural hormone (recombinant human thyroid stimulating hormone [rhTSH]) instead of thyroid medication withdrawal to stimulate the cancerous cells to quickly take up the radioactive iodine, the research team in The Netherlands and Belgium found that the problems of hypothyroidism can be avoided. This new technique may also increase the safety of radioiodine treatment and may allow a higher, more effective dose of radioiodine to be used when needed. That’s because when the body is not in a state of hypothyroidism, it can more efficiently process and excrete any radioiodine that hasn’t been absorbed.

The study, which involved 14 patients and 17 treatments, showed that treatment with rhTSH was well tolerated. None of the patients showed blood toxicity, and no bone marrow-related side effects were noted. Blood and bone marrow are the tissues most sensitive to radiation. As expected, none of the patients showed symptoms of hypothyroidism during or following treatment.

According to Dr. de Keizer, "Using rhTSH before administering radioiodine treatments resulted in no clinically relevant side effects. Therefore, although further testing needs to be done, our findings imply this treatment should improve efficacy while preserving safety and tolerability of treatment."

Ann Coleman | EurekAlert!
Further information:
http://www.snm.org
http://jnm.snmjournals.org

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>