Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding About Pathogen in Newborns, May Aid Vaccine Development

21.07.2004


A previously unrecognized molecular structure on the surface of the human bacterial pathogen Group B Streptococcus (GBS) – the most common cause of sepsis and meningitis in newborn infants – is described by researchers at the University of California, San Diego (UCSD) School of Medicine in Proceedings of the National Academy of Sciences published online the week of July 19, 2004.

The new discovery has important implications for understanding the mechanism of infection and the design of vaccines to boost human immunity against this potentially devastating pathogen. For example, potential GBS vaccines currently in clinical trials have been developed without this new knowledge, which could possibly impact their effectiveness.

The findings are a collaborative effort between the laboratories of senior author Ajit Varki, M.D., UCSD professor of medicine and cellular and molecular medicine, and co-director of the UCSD Glycobiology Research and Training Center (GRTC), and Victor Nizet, M.D., associate professor of pediatrics, UCSD Division of Infectious Diseases and an attending physician at Children’s Hospital, San Diego. The two groups have been studying the phenomenon in which certain bacterial pathogens coat their surfaces with a thick capsule made of carbohydrate sugars similar to those found on the surface of human cells. In the case of GBS, the bacterial surface capsule contains sialic acid, a sugar that is also displayed prominently on the surface of all cells in the human body. It is believed that GBS uses sialic acid as a form of “molecular mimicry”, where the bacteria disguises itself to look more like human cells and thereby avoids recognition by the immune system.



Using the sophisticated analytical techniques of the UCSD GRTC facility, graduate student Amanda Lewis discovered that the sialic acid of the GBS capsule contained a chemical modification known as O-acetylation, that had been previously overlooked in more than 30 years of published investigations. O-acetylation was detected in every one of 10 different GBS strains examined, with the overall level of modified sialic acid ranging from 5 percent to 55 percent.

“There are a number of reasons why previous researchers have missed this biochemical structure,” said Varki. “Older detection instruments may have been less sensitive, and some of the harsh chemical treatments employed to purify the capsule are known to destroy O-acetylation.”

He added that “since similar chemical treatments are commonly used to isolate GBS capsule for immunization studies, GBS vaccines in development are missing this component of the true or ‘native’ surface structure of the bacteria.”

In other bacterial pathogens where O-acetylation of surface sugars has been studied, it has been shown that the immune system is able to recognize and generate antibodies that specifically react with the O-acetyl modification. In the case of GBS, this possibility is particularly intriguing.

Varki noted that “an unmodified sialic acid-containing structure resembling the GBS capsule sugar, is present on the surface of all human cells; however, an O-acetylated form of this sugar has never, so far, been reported in humans”.

“This observation may have particular relevance for vaccine design,” Nizet added, “since the elimination of O-acetylation in a GBS vaccine potentially destroys a unique biochemical target for immune protection, inadvertently creating a vaccine antigen that more closely resembles normal human tissue structures”.

The discovery of the UCSD group has implications beyond vaccine design, and may also shed new light on the basic biology of the GBS infection. In previous studies, the presence or absence of O-acetylation on sialic acid has been shown to have important effects on the way the sugar can interact with molecules of the immune system such as antibodies and complement. The researchers are currently investigating whether GBS bacteria may use O-acetylation to vary their surface structure and create a “moving target” which is difficult for the human immune system to recognize.

It is estimated that 20 to 30 percent of women of childbearing age are asymptomatic carriers of GBS on their vaginal mucosal surface. Newborns can become infected with GBS that invade through the placenta to initiate infection in the womb, or alternatively, during delivery by exposure to contaminated vaginal fluids. Despite extensive screening of pregnant women and antibiotic prophylaxis during labor, it is estimated that approximately 3,600 newborns develop invasive GBS infections annually in the United States. In addition to neonatal disease, GBS is increasingly associated with serious infections in adult populations such as pregnant women, diabetics, and the elderly.

“The presence of sialic acid in the GBS surface capsule has long been recognized as a critical virulence factor in disease progression,” said Nizet. “A full appreciation of its biochemical complexity will be critical for development of GBS therapeutic or preventative strategies that target this molecule.”

The study was supported by grants to Varki from the National Institutes of Health (NIH) and to Nizet from the Edward J. Mallinckrodt, Jr. Foundation.

| newswise
Further information:
http://www.ucsd.edu
http://cmm.ucsd.edu/varki/biography.html

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>