Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Severe depression associated with greater number of nerve cells in thalamus region of brain

01.07.2004


Individuals who suffer from severe depression have more nerve cells in the part of the brain that controls emotion, researchers at UT Southwestern Medical Center at Dallas have found

Studies of postmortem brains of patients diagnosed with major depressive disorder (MDD) showed a 31 percent greater than average number of nerve cells in the portion of the thalamus involved with emotional regulation. Researchers also discovered that this portion of the thalamus is physically larger than normal in people with MDD. Located in the center of the brain, the thalamus is involved with many different brain functions, including relaying information from other parts of the brain to the cerebral cortex.

The findings, published in today’s issue of The American Journal of Psychiatry, are the first to directly link a psychiatric disorder with an increase in total regional nerve cells, said Dr. Dwight German, professor of psychiatry at UT Southwestern.



"This supports the hypothesis that structural abnormalities in the brain are responsible for depression," he said. "Often people don’t understand why mentally ill people behave in odd ways. They may think they have a weak will or were brought up in some unusual way.

"But if their brains are different, they’re going to behave differently. Depression is an emotional disorder. So it makes sense that the part of the brain that is involved in emotional regulation is physically different."

Four groups were represented in the study: subjects with major depression, with bipolar disorder and with schizophrenia, as well as a comparison group with no history of mental illness. Major depression is characterized by a depressed mood and lack of interest or pleasure in normal activities for a prolonged period of time, while bipolar disease is distinguished by alternating periods of extreme mania or elevated mood swings, and severe depression. Schizophrenia often results in psychotic episodes of hallucinations and delusions and a lack of perception of reality.

Brain specimens were provided by the Stanley Foundation Brain Bank, which collects donated postmortem brains for research on mental illness, and the subjects were matched according to age, gender, brain weight and other variables.

Researchers from UT Southwestern, working with a team from Texas A&M University System Health Science Center, used special computer-imaging systems to meticulously count the number of nerve cells in the thalamus.

Results showed an increase of 37 percent and 26 percent, respectively, in the number of nerve cells in the mediodorsal and anteroventral/anteromedial areas of the thalamus in subjects with MDD when compared with similar cells in those with no psychiatric problems. The number of nerve cells in subjects with bipolar disorder and schizophrenia was normal.

Researchers also found that the size of the affected areas of the thalamus in subjects with MDD was 16 percent larger than those in the other groups.

"The thalamus is often referred to as the secretary of the cerebral cortex – the part of the brain that controls all kinds of important functions such as seeing, talking, moving, thinking and memory," Dr. German said. "Most everything that goes into the cortex has to go through the thalamus first.

"The thalamus also contains cells that are not involved with emotion. Our studies found these portions of the thalamus to be perfectly normal. But the ones that are involved in emotion are the ones that were abnormal."

Researchers also looked at the effect of antidepressant medications on the number of nerve cells and found no significant difference among any of the subject groups – whether they had taken antidepressants or not – reinforcing the belief that abnormalities in brain development are responsible for depression.

Donna Steph Hansard | EurekAlert!
Further information:
http://www.utsouthwestern.edu
http://www.utsouthwestern.edu/home/news/index.html

More articles from Health and Medicine:

nachricht Shipment tracking for "fat parcels" in the body
14.10.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Antibody-based eye drops show promise for treating dry eye disease
14.10.2019 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

New material captures carbon dioxide

15.10.2019 | Materials Sciences

Drugs for better long-term treatment of poorly controlled asthma discovered

15.10.2019 | Interdisciplinary Research

Family of crop viruses revealed at high resolution for the first time

15.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>