Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Standard to Help Diagnose Heart Attacks

25.05.2004


Diagnosing heart attacks will become a more precise science thanks to the first of a new series of clinical standards just issued by the National Institute of Standards and Technology (NIST). Standard Reference Material (SRM) 2921 (human cardiac troponin complex) will help manufacturers develop and calibrate assays that measure specific protein concentrations in patient blood samples to determine whether a heart attack has occurred.


crystal structure of the human protein cardiac troponin.
Graphic Courtesy Protein Data Bank



The SRM is a solution containing certified concentrations of three related proteins, including cardiac troponin I, purified from human heart tissue from cadavers. Users can calibrate their assays by analyzing the SRM and comparing the results to the NIST-certified value for troponin I. The standard is expected to help reduce variations in clinical test results from as much as 50-fold on the same sample to just twofold. “It’s a big first step toward getting the system under control,” says Michael Welch, leader of the NIST development team.

NIST already produces more than 60 SRMs for the clinical diagnostics community, but this is the first one designed to help measure concentrations of large, protein-based health status markers. Troponin I is difficult to measure because it can exist in low concentrations and in different chemical forms, sometimes attached to other related proteins. NIST is developing additional standards and methods for measuring other health status indicators of this type, including hormones used to assess thyroid function, and other markers for heart attack risk such as homocysteine and C-reactive protein.


SRM 2921 is intended to help U.S. makers of in vitro diagnostic (IVD) medical devices sell their products in Europe. A European Union directive requires that such devices be calibrated with standards that are traceable to internationally recognized certified reference materials or procedures. SRM 2921 has been nominated for inclusion on the international list of higher order reference materials. The list currently contains approximately 150 entries for 96 health status markers; NIST SRMs provide traceability for 72 of these.

Laura Ost | NIST
Further information:
http://www.nist.gov/public_affairs/techbeat/tb2004_0524.htm

More articles from Health and Medicine:

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>