Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV: a sugar shield to evade host defences

30.04.2004


The extreme diversity of human immunodeficiency virus (HIV) strains is a major obstacle to anti-AIDS vaccine elaboration or the development of new treatments against the disease. IRD scientists, working jointly with other institutes (1), used statistical methods to determine the adaptive molecular mechanisms the virus deploys to avoid neutralization by the host immune defences. This adaptive molecular evolutionary strategy, based on genetic variability, proved to be a feature common to the different HIV subtypes. The virus apparently uses the great variety of its envelope-protein receptor binding sites, which have the role of fixing large complex carbohydrate molecules in the form of glycans, to provide protection against the host’s antibodies. These sugars are large structures that apparently block the way of human antibodies that would otherwise fix on to the virus, without hindering these envelope proteins in their function of attaching the virus to the host cell. These results open the way to potential ways of tackling AIDS.

In humans, the AIDS virus HIV manifests extreme genetic variability. It is particularly virulent, probably because its introduction into populations is recent (2). It has a potential for rapid evolution, at both population and individual scales, owing to a mutation rate among the highest in the living world, and to its recombination capacity. This high evolutionary potential is one of the major obstacles hindering the development of an effective vaccine. Starting from the principle that this mutation-based evolution of the virus is a response to selective pressures exerted by the host immune response (thought to be the dominant evolutionary force) , IRD researchers and their project partners (1) attempted to determine, at the molecular scale, the adaptive mechanisms at work and their comparative occurrence between the different HIV groups and subtypes. They used powerful statistical techniques (the codon-based maximum likelihood method) to investigate and compare the evolution of 3 major genes of the HIV genome, gag, pol and env. They did this for several HIV subtypes. They were able to confirm that the virus followed a dynamic adaptation strategy, based on the deployment of a shield of complex carbohydrates (glycans) to block antibody binding and thus provide protection against the host immune response.

Among the mutations randomly affecting the genome as a whole, those which influence the genes essential for viral survival and multiplication appear to be systematically selected against (negative selection). The gag gene, which codes for the proteins of the capsid (containing the genome and the viral proteins) and the pol gene, which allows synthesis of enzymes essential for virus replication, thus appear highly conserved and stable from one subtype to another.



However, the env gene, which codes for the virus’s envelope proteins, targets of the host’s immune system antibodies, appears to contain positively selected sites: at the point on the genome where this gene is located, the mutations would be maintained as carriers of evolutionary advantage. They would allow diversification of the proteins expressed which, in this way, would no longer be recognized by the antibodies. However, these same proteins must conserve their vital function of binding the viral particle to the host-cell membrane (the CD4 of the immune system), which implies that on the env gene, the virus would manage to reconcile two opposing selection forces, one diversifying, the other conservative.

The research team used statistical significance tests to identify this positive selection at the scale of the protein expressed by the env gene, determine precisely the sites where it operates in the amino-acid sequence and compare the distribution of these sites in the 6 HIV subtypes studied. The results obtained showed that the mutations selected are not distributed randomly, but on given amino acid sites and in an identical way in the 6 HIV subtypes. These variants could all therefore be subject to the same selection pressure exerted by the immune system which, conversely, would react in the same way to each of these subtypes. Moreover, these positive selection sites appeared not be correlated with the virus recognition sites by the antibodies (epitopes), but with the glycosylation sites on the protein surface to which the sugars are bound. In this way a recent hypothetical model (3) envisaging the use by the virus of extremely large complex sugars to evade the host’s immune system. These sugars fix on to the glycosylation sites, creating a spatial mask, and prevent the antibodies from binding to the virus recognition sites.

Selection pressure by the immune system acts on these sites. They appear to change their spatial configuration and thereby the position of the sugar molecules. Thanks to this modifiable sugar shield, the virus evades the antibodies without harming its ability to fix on to host cells. This investigation confirmed the theoretical model involving a common viral strategy for the whole range of HIV subtypes tested. It therefore provided information of vital importance for the development of new treatments and, possibly, of a candidate vaccine against Aids, viable for all HIV strains. Other research work is planned aiming to reinforce these results and further the studies on the variability in the primates of the SIVs, which originated the ancestors of human HIVs.

Bénédicte Robert | EurekAlert!
Further information:
http://www.ird.fr/us/actualites/fiches/2004/198.htm

More articles from Health and Medicine:

nachricht Researchers reach milestone in use of nanoparticles to kill cancer with heat
27.06.2019 | Oregon State University

nachricht New combination therapy established as safe and effective for prostate cancer
26.06.2019 | Society of Nuclear Medicine and Molecular Imaging

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experimental physicists redefine ultrafast, coherent magnetism

For the first time ever, experimental physicists have been able to influence the magnetic moment of materials in sync with their electronic properties. The coupled optical and magnetic excitation within one femtosecond corresponds to an acceleration by a factor of 200 and is the fastest magnetic phenomenon that has ever been observed.

Electronic properties of materials can be directly influenced via light absorption in under a femtosecond (10-15 seconds), which is regarded as the limit of...

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Researchers reach milestone in use of nanoparticles to kill cancer with heat

27.06.2019 | Health and Medicine

Unexpected mechanism allows CaMKII to decode calcium signaling in the brain

27.06.2019 | Life Sciences

Networks of Gene Activity Control Organ Development

27.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>