Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hemochromatosis, Inflammation and Anemia: Researchers Discover a Surprising Link

19.04.2004


Patients with inflammatory diseases such as arthritis, chronic infections and some types of cancer, often become anemic – a condition called anemia of chronic disease (ACD). While ACD rarely kills patients, it can make their lives miserable. A discovery at EMBL, in collaboration with researchers at Children’s Hospital Boston and Harvard Medical School, now links the gene HFE to ACD. The HFE gene is mutated in patients suffering from the common iron overload disease hemochromatosis. This finding gives hope that one day an effective and specific therapy may be developed to treat ACD (featured in Nature Genetics, April 18, 2004).



When people are infected with microbes, the level of iron in their blood drops. This has an important function: iron is essential for the growth of infectious microbes, so one way for the body to fight back is to lower the amount of iron in circulation.

“Unfortunately, while this decrease in iron hinders the spread of parasites and is beneficial in the short term, it can cause anemia," notes EMBL Group Leader Matthias Hentze. “During a long term inflammatory condition, low levels of iron can starve the bone marrow of this metal which is essential for blood cells, leading to ACD.”


Because the anemia is a consequence of a natural immune defense, it has been difficult to think of a therapy that wouldn’t also disturb the immune system itself.

Now scientists may have found a way to combat the anemia of chronic diseases by blocking the action of only one gene – HFE – without having much effect on the rest of the immune response, and without any serious consequences for the organism.

HFE is the gene mutated in the common genetic disease hemochromatosis, a condition in which the body becomes overloaded with iron. Researchers believe that when there are increased iron levels in the body, HFE signals to another molecule, an iron hormone called hepcidin. The role of hepcidin is to decrease the level of iron in the blood.

The EMBL and Children’s/Harvard research groups have now proved that HFE also plays a role in controlling the production of hepcidin when there is inflammation. They also showed that HFE is apparently not needed for any of the other common immune responses.

During long-term inflammatory conditions, hepcidin continues to bring down the level of iron – making patients anemic. So by blocking HFE, hepcidin production is reduced, and iron level no longer decreases. A therapy aimed at blocking HFE would be able to treat the anemia and would not affect the rest of the immune system. This would be beneficial to those ACD patients where the disadvantages of the anemia outweigh the benefits of withholding iron (e.g. in autoimmune diseases or arthritis).

EMBL scientist Martina Muckenthaler and the Hentze Group collaborated closely with researcher Nancy Andrews and her team at Children’s Hospital Boston and Harvard Medical School to find this link. The Children’s/Harvard team developed special strains of mice, in which researchers could study the effects of inflammation on an organism where HFE was blocked. The results were remarkable.

“Our results clearly link HFE to the development of this type of anemia. And more importantly, it seems that you can affect HFE function without disrupting the immune system itself,” notes Muckenthaler. “This is the first time that a link has been made between HFE, inflammation and anemia – giving us a clear target to aim for a new treatment for ACD.”

Trista Dawson | EMBL
Further information:
http://www.embl.de
http://www.childrenshospital.org.

More articles from Health and Medicine:

nachricht Finding new clues to brain cancer treatment
21.02.2020 | Case Western Reserve University

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>