Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists announce long-sought mouse model of human pancreatic cancer

10.12.2003


Could yield advances in early diagnosis, treatment of lethal disease



Researchers at Dana-Farber Cancer Institute have created bioengineered mice that develop aggressive, fatal pancreatic cancer through the same genetic mishaps that cause the disease in humans. The findings are being posted online today by the journal Genes and Development.

Because the mouse-model cancers start and progress along a path that closely resembles the disease’s course in humans, the scientists believe it will be particularly useful in searching for telltale substances, or biomarkers, in the animals. These biomarkers could lead to a blood or urine screening test to catch the disease in an early and potentially curable stage in the mice and, ultimately, in humans.


Currently, nearly all the 30,000 cases of pancreatic cancer diagnosed annually are fatal within a matter of months because they are too advanced to remove surgically by the time they cause symptoms. Moreover, the standard treatments of chemotherapy and radiation are largely ineffective, for reasons that may become clearer as researchers study the biology of the disease in mice.

"This model shows great promise as a platform for rapid and efficient testing of novel therapeutic agents, and for the discovery of tumor stage-specific markers - both critical, unmet needs for the fourth-leading cause of cancer death in the United States," said Ronald A. DePinho, M.D., a senior author of the paper. The report, whose lead authors are Andrew J. Aguirre and Nabeel M. Bardeesy, Ph.D., will appear in the Dec. 15 print issue of Genes and Development.

DePinho, who is also a professor of medicine at Harvard Medical School, added that the new mouse model is the first to contain the two "critical lesions," or mutations, common to the human disease and "which faithfully recapitulates the rapid onset and lethal progression of the disease."

As in other solid tumors such as colon cancer, a series of genetic mutations underlies the conversion of normal cells in the pancreatic ducts to a precancerous series of stages termed PanIN-1, 2 and 3, and, finally, full-fledged, invasive cancer called adenocarcinoma. Only after the tumor has become a life-threatening adenocarcinoma does it cause symptoms by blocking bile ducts, causing jaundice and symptoms of pain, nausea and weight loss.

The genes mutate for various reasons: carcinogens such as tobacco smoke (smoking is a risk factor for pancreatic cancer), possibly dietary components and advancing age (mistakes in the DNA code of genes pile up and the body’s DNA repair mechanisms fail to keep pace). Several particular mutations have been identified in tissues taken from pancreatic cancer patients. Among them are KRAS - a growth signal stuck in the "on" position, resulting in unchecked cell growth - and several genes that normally suppress tumor formation, including INK4a/Arf, p53, and SMAD4.

Because the basic mechanisms of pancreatic cancer are so poorly understood, scientists have been trying for more than 15 years to create a mouse model that would mimic the human disease but which could be studied and used to identify potential drug targets. However, none of the models to date had produced cancer in mice that faithfully replicated what occurs in humans.

The team headed by Aguirre and Bardeesy used sophisticated bioengineering methods to control the activities of mutant genes in the pancreas. One, a mutant KRAS gene, was activated and kept switched on continuously as the mouse pancreas developed in the fetus. The other mutation inactivated the normally functional INK4a/Arf tumor suppressor gene. These two "signature mutations," the researchers showed, are both needed to convert normal cells into premalignant and then fully invasive pancreatic tumors. Mice that were given either of the mutations alone did not develop invasive cancers.

Bardeesy said that because the cancer-prone mice are all genetically identical and raised in a standard environment, it is possible to identify the biomarkers associated with early and late stages of the cancer. This will provide an entry point for the discovery of equivalent molecules useful in screening humans.


The research was supported by the Lustgarten Foundation for Pancreatic Research, which was established in the name of Marc Lustgarten, Vice Chairman of Cablevision Systems Corp. of New York, who died of the disease.

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Contact: Richard Saltus, 617-632-5357.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu/

More articles from Health and Medicine:

nachricht Finding new clues to brain cancer treatment
21.02.2020 | Case Western Reserve University

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Turbomachine expander offers efficient, safe strategy for heating, cooling

25.02.2020 | Power and Electrical Engineering

The seismicity of Mars

25.02.2020 | Earth Sciences

Cancer cachexia: Extracellular ligand helps to prevent muscle loss

25.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>