Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unraveling a protein, researchers uncover mechanics of anti-cancer agent

03.12.2003


From within the rich fabric of connecting tissue between cells, researchers of four institutions, led by the University of Illinois at Urbana-Champaign, have identified the action of anastellin, a natural agent that is showing promise blocking metastasis of cancer cells and enhancing wound healing.


FN-III-1 during unraveling (bottom). Red (top and below) depicts the strong sheet (anastellin). Green depicts the weak sheet.
Credit: UIUC



That anastellin is derived from the cell adhesion protein fibronectin found in the extracellular matrix surrounding cells was known. Researchers at the Burnham Institute in California in September had documented the molecular structure of anastellin, but its ability to initiate matrix assembly and block the spread of cancer cells remained a mystery.

Using crystallography, atomic force microscopy and advanced computer modeling, researchers sorted the chemical structure and mechanical strength of the known fibronectin proteins that glue together myriads of cells in mammalian body tissues.


In the Dec. 9 issue of the Proceedings of the National Academy of Sciences,
they show that the fibronectin known as FN-III-1 behaves differently mechanically than other type-three modules. The paper was placed online Dec. 1 at the PNAS Web site.

"Type 3-1 stands out," said Klaus Schulten, holder of the Swanlund Chair in Physics at Illinois and director of the theoretical and computational biophysics group at the Beckman Institute for Advanced Science and Technology.

"When stretched mechanically, it extends in two stages, first to about one-third of its total length, then to full length, or about 10 times its initial size," he said. "The first stretch reaches a rather stable intermediate. Other fibronectin type-three modules reach their extended length more quickly."

All fibronectin type-three modules consist of a sandwich structure containing two sheets, but Schulten and his colleagues found that one sheet of 3-1 is much stronger.

"It is mainly this strong sheet that is anastellin, and it stabilizes the stretching intermediate by refusing to unravel," said Viola Vogel, professor of bioengineering and director of the Center for Nanotechnology at the University of Washington at Seattle.

"Research has shown that cells can apply sufficient mechanical force to the surrounding extracellular matrix to unravel fibronectin type-three modules," she said. "The stretching of 3-1 unmasks the buried anastellin. It appears to restrict the motion of cancer cells, in effect creating strong jail bars that hold the cancerous inmates from moving freely."

"To understand how this is done," Schulten said, "one must know that the extracellular matrix is an intelligent fabric. It connects cells, guides their movements and communication, and acts as glue between cells in living tissue, strengthening when needed."

The matrix is made of several types of proteins, not just fibronectin. Each has a distinctive chemical composition and structure. The proteins are like knots in a net, forming a network of fibrils. As the network is stretched, the proteins change their structures and expose chemically active groups. Once exposed, anastellin enhances the ability of the proteins to form networks.

"The cells use anastellin apparently when it arises in half-unraveled FN-III-1 to strengthen the glue effect of the matrix," said Mu Gao, a doctoral student studying with Schulten at Illinois. "Anastellin acts as part of FN-III-1 or by itself as an anti-cancer drug."

Unraveling of fibronectins is determined by the arrangement of the some 100 amino acids within them, said David Craig, a former graduate student in bioengineering at the University of Washington. FN-III-1’s amino acids form hydrogen bonds among themselves and are organized to create the strong-weak-sheet protein structure. Nuclear magnetic resonance unveiled the amino-acid arrangement that makes up the protein structure.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>