Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-platelet drug blocks bone metastases in mice

04.11.2003


Treatment also slows development of other tumors



Researchers at Washington University School of Medicine in St. Louis have dramatically slowed the metastatic spread of a highly malignant tumor in mice by disabling platelets with an experimental drug.

Based on earlier experiments, scientists had hoped the drug, ML464, would block the spread of a melanoma cell line into bones. They were pleasantly surprised to find that not only did the treatment block bone metastases, it also reduced the development of new tumors in organs like the liver, intestines and kidney.


"Bone metastases appear in 75 percent of all patients who develop metastatic breast and prostate cancer," says Katherine Weilbaecher, M.D., assistant professor of medicine and of pathology and immunology. "These metastatic tumors can be very painful and weaken the bone to the point of fracture."

Weilbaecher, the principal investigator in the new study, cautions that while it might be possible to use ML464 or other anti-platelet drugs to achieve the same effect in humans, such treatments have not been tested for their anti-metastatic effects yet and would leave patients at risk of bleeding. "This is a very exciting start, but it’s just the beginning," says Weilbaecher. "The more we can understand this, the more narrowly we can target our therapy and explore the possibility that we might be able to block metastasis and only partially block clotting function."

The results are published today in the online early edition of the Proceedings of the National Academy of Sciences.

Weilbaecher’s research group has been studying connections between bone metastases and osteoclasts, cells in bone marrow that normally break down the materials in bone for routine replacement. Scientists suspected that osteoclasts aid tumors’ destruction of bone because they can make acid, an essential ingredient for breaking into bone.

Suzanne Bakewell, a Ph.D. graduate student in Weilbaecher’s lab, led a series of experiments in mice that began with a test of the potential link between osteoclasts and bone metastases. After genetically disabling a protein important to osteoclasts, beta3 integrin, researchers injected the mice with melanoma tumor cells altered to produce a black pigment that makes them easy to spot.

"This is a very virulent cancer cell line," Weilbaecher says. "In 14 days, 75 to 80 percent of normal mice injected with these cells will have disseminated tumors throughout the body, including their bones and bone marrow, the spongy material inside bones that produces blood cells."

In contrast, the experimental mice lacking the beta3 integrin developed tumors in other parts of the body but had no tumor cells in their bones or bone marrow.

Because beta3 integrin is known to have a prominent role in other tissues of the body, the group then conducted an experiment involving bone marrow transplants from the genetically engineered mice into normal mice. The transplants protected normal mice from bone and bone marrow tumors, proving that the protective effects came from factors in the bone marrow, the place where osteoclasts are found.

However, the next experiment, conducted on mice genetically engineered with a defect very specific to osteoclasts, failed to produce equal levels of cancer protection. The tumors couldn’t get into the bone itself, but they proliferated in the bone marrow.

"We were completely surprised by this," Weilbaecher says. "Blocking osteoclast function still seemed to be linked to less bone destruction by bone metastases, but that didn’t tell us why these mice developed so many tumors in the bone marrow while mice with defective beta3 integrin didn’t."

The group then turned to the next most likely cause of the protective effect: platelets, bits of membrane in the bloodstream that clump together to form blood clots. Like osteoclasts, they are produced in bone marrow, and a form of beta3 integrin plays a prominent role in their activity. Other researchers have linked platelets to the spread of lung tumors, and patients with metastatic cancer frequently have high platelet counts and excessive blood-clotting activity.

Weilbaecher’s group treated experimental mice with high doses of ML464, which specifically blocks the form of beta3 integrin found on platelets. They dosed the mice every12 hours for the first two and a half days of the 14-day experiment.

"We gave the mice a dose of ML464 that would block all platelet aggregation," says Weilbaecher. "During this period, they were very susceptible to bleeding. No surgeon would have wanted to operate on them."

Injected cancer cells given to the experimental mice thirty minutes after the anti-clotting drug never made it into the bone or bone marrow, and were rarely able to find a foothold elsewhere and start building a tumor.

"The mice treated with the drug had much fewer metastases, and when they did get metastases they were smaller," Weilbaecher says. "There are other drugs that block platelet beta 3 integrin that are routinely used in patients who receive coronary artery stents, so this is definitely something that’s worth exploring for potential clinical application."

Weilbaecher and others are working on several hypotheses for how platelets may help tumor cells metastasize. Most theories assume that platelets bind to tumor cells circulating in the bloodstream, and then begin to bind to other platelets, gathering tumor cells together. The platelets may hide tumor cells from the immune system, supply them with essential growth factors or just provide them with a ride.

"An aspirin a day is a very potent blocker of platelet function--it can impact survival in heart attack patients, because you get less clotting. And you don’t need very much dosage to reduce cardiac risk," Weilbaecher notes. "Here, for metastasis prevention, I can’t tell you if we need a lot of this anti-platelet effect or a little, or whether other drugs like aspirin or ticlopodine would be effective. That hasn’t been explored yet in this model, but it will be."


Bakewell SJ, Nestor P, Prasad S, Dowland N, Mehrotra M, Scarborough R, Kanter J, Abe K, Phillips D, Weilbaecher K. Platelet and osteoclast B3 integrins are critical for bone metastasis. Proceedings of the National Academy Sciences, early online edition, November 3, 2003.

Funding from National Institutes of Health, National Institute on Aging, the Barnes Jewish Foundation Grant and the Edward G. Mallinckrodt, Jr foundation Grant.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>