Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Determine a Contributing Genetic Factor of Photosensitivity in Lupus Patients

28.10.2003


Discovery opens doors to treating symptom that can cause the body to attack itself

Researchers at the University of Pennsylvania School of Medicine have identified a variant of the human gene for tumor necrosis factor-alpha (TNF-alpha) as the cause for photosensitivity in lupus patients. This discovery, which was presented today at the annual scientific meeting of the American College of Rheumatology, will not only help in treating photosensitivity, but will also advance research on treating this potentially damaging symptom and possibly point to one of the genetic causes of lupus.

Victoria Werth, MD Associate Professor of Dermatology and Medicine in Penn’s School of Medicine, working in collaboration with Kathleen E. Sullivan, MD, PhD, Associate Professor of Pediatrics, University of Pennsylvania School of Medicine, and attending physician in The Children’s Hospital of Philadelphia Division of Allergy and Immunology, identified a variant of the TNF-alpha promoter that showed increased activity when exposed to sunlight. This discovery is crucial to understanding photosensitivity and lupus because TNF-alpha has been shown to stimulate apoptosis, the process of cellular death. As skin cells die, intracellular proteins move to the cell’s surfaces where they stimulate an immune reaction. The immune system makes new antibodies against these proteins and triggers further inflammation, causing the body to attack its own internal organs - just from sunlight.



As part of her research, Werth has studied the effects of TNF-alpha in cultured cells and patients. She has found that a large percentage of patients with subacute cutaneous lupus erythematosus (SCLE), a highly photosensitive form of lupus, has one or even two copies of the TNF-alpha variant gene. Thus, when these cells are exposed to sunlight, the gene becomes overactive, and a large quantity of TNF-alpha is produced. This causes nearby skin cells to undergo apoptosis, therefore stimulating the immune system and triggering flares that could affect internal organs.

The increased presence of TNF-alpha in lupus patient cells suggests that additional genetic variants are associated with increased TNF-alpha production in response to sunlight. This could mean major advances in treating lupus patients.

“These results now let us think about different categories of drugs for treatment of photosensitivity,” says Werth. While drugs like antimalarials and thalidomide are already used to inhibit TNF-alpha and treat the skin manifestations of lupus, these findings allow researchers to test newer drugs that inhibit TNF-alpha. Also, as researchers better understand the wavelengths of light that trigger the disease, they can develop sunscreens that will hopefully improve the ability to block the harmful effects of sunlight.

Funding for this research was provided by the Lupus Research Institute through their Novel Research Program, which seeks to support highly promising novel approaches to discover the cause, improve the treatment and cure lupus.

Jen Miller | University of Pennsylvania
Further information:
http://www.uphs.upenn.edu/news/News_Releases/oct03/lupus.htm

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>