Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better model of cancer development sheds light on potential angiogenesis target

21.10.2003


Johns Hopkins Kimmel Cancer Center researchers have learned that a common, cancer-linked gene thought to control blood vessel growth may not turn out to be useful as an effective target for cancer drug development. Their research, published in the October issue of Cancer Cell found that results of previous studies that pinned hope on the Id1 gene may not hold up in a mouse model thought to more accurately represent how humans get cancer.



The scientists began their study attempting to confirm previous work, including their own, suggesting that Id1 activation was an important step in tumor angiogenesis, a process that builds blood vessels needed for tumor growth.

In the earlier research on Id1, scientists used a mouse model in which tumor cells were injected directly into the animals to stimulate cancer growth: in effect, a tumor transplant. The tumors grew in the animals with Id1 activation while the injected tumors failed to grow in mice whose Id1 genes were inactivated.


"But this is not how people get cancer," says Rhoda Alani, M.D., director of the study and assistant professor of oncology, dermatology, molecular biology and genetics at the Johns Hopkins Kimmel Cancer Center. "We get cancer through a series of genetic events that occur over time, triggered by both internal and external factors."

In the Hopkins investigator’s new model, mice were exposed to carcinogens placed on their skin and allowed to gradually develop cancer. Results showed a completely opposite outcome with respect to Id1: all mice with the Id1 gene turned off developed more tumors that also were larger than in previous studies.

"Clues to promising cancer drug development are only as good as the model in which you study a process," says Alani. "If knocking out the Id1 gene in two different models produces two different results, then we need to reevaluate the role that Id1 plays in angiogenesis."

In the model using skin carcinogen exposure, the team’s preliminary findings suggest that cancers may develop faster in mice without Id1 because inactivation of the Id1 gene triggers alterations in a receptor on skin immune cells called gamma delta T cells. With a faulty receptor, these cells fail to migrate to the skin to fight off cancer cells.

"We realize that studies based on tumor transplant models are quicker and easier to perform in the laboratory, but it’s important to study both the transplant and genetic models to get a clear picture of how genes interact," she says. The researchers believe that the tumor transplant model is most similar to the process of cancer metastasis, in which Id1-associated angiogenesis is likely to play an important role.

The research was funded by the National Institutes of Health, the Flight Attendant Medical Research Institute, the American Skin Association, and the V Foundation.

Study participants include Hashmat Sikder, David L. Huso, Binghe Wang, Byungwoo Ryo, and Jonathan D. Powell from Johns Hopkins; Hong Zhang and Sam T. Hwang from the National Cancer Institute.

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/

More articles from Health and Medicine:

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

nachricht Breakthrough in understanding how deadly pneumococcus avoids immune defenses
13.11.2018 | University of Liverpool

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>