Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Device Measures How Much Force Is Used to Deliver a Baby

20.10.2003


Image A: Three electrodes attached to the forearm are used to pick up electrical impulses in the muscles used to deliver a baby. The data is transmitted to a laptop computer across the room.

Photo by Will Kirk


Image B: Stanley Huang, William Tam, Robert Allen, Yen Shi (Gillian) Hoe and I-Jean Khoo (not pictured) have obtained a provisional patent covering their device to measure the force used in delivering a baby. Huang, Tam, Hoe and Khoo were students last spring in a biomedical design course taught by Allen.
Photo by Will Kirk


Students Who Built Instrument Are Finalists in National Collegiate Inventors Competition

When the birth of a baby does not proceed smoothly, how much force should a doctor or midwife apply? If a complicated delivery takes too long, the child could suffocate, yet pulling too hard could injure the child.

To address this dilemma, Johns Hopkins University biomedical engineering students have invented an unobtrusive device that measures the amount of force a doctor or midwife uses while delivering a baby. A wireless transmitter sends the data from the doctor to a computer across the room. The system is already being tested at The Johns Hopkins Hospital, where researchers hope it eventually will help them identify the safest delivery method for a complicated birth. The inventors believe their device also could be used as a teaching tool, helping obstetricians-in-training learn how to assess the amount of force they use during a routine delivery.



The electromyographic instrument, which measures electrical impulses in the muscles of the forearm, was devised and constructed by a team of undergraduates during a semester-long biomedical engineering design team course. Based on this achievement, four team members who made the most significant contributions have been selected as finalists in this year’s Collegiate Inventors Competition, sponsored by the National Inventors Hall of Fame in Akron, Ohio. The Johns Hopkins device was one of six undergraduate projects to advance to this stage of the contest. During the week of Oct. 20, the students will travel to New York City, where the final judging and announcement of winners will take place.

The assignment that produced the device came from design course instructor Robert Allen, a senior lecturer in the Department of Biomedical Engineering. Allen and his obstetrics research colleagues have been looking for a method of measuring the force used in a delivery as a way to help determine the best technique to employ during complicated births. Previously, inventors have placed sensors in gloves or on the hands, interfering with the doctors’ grasp. Allen’s students came up with a less intrusive system, in which three electrodes are attached to the forearm and connected to a small metal box that rests in the doctor’s pocket. The box collects information from the electrodes and transmits it to a receiver up to 50 feet away. The receiver is connected to a laptop computer, which stores and processes the data.

Since April, when the students finished the project, Edith Gurewitsch, assistant professor of gynecology and obstetrics in the Johns Hopkins School of Medicine, has supervised an institutional review board-approved pilot study, testing the device during 15 deliveries performed by physicians and a midwife. The participants wore the electrodes under sterile gowns and gloves. Although some fine-tuning has been required to ensure that the muscle impulses are detected by the electrodes, Gurewitsch said, "The device seems to work well." The obstetrics researcher is also working with Allen and the Johns Hopkins student inventors, using the device in a lab in which mock deliveries are performed using a baby-size doll.

Generally, physicians or midwives apply minimal force on the child during a routine delivery. But Gurewitsch hopes to use the student-built device in her study of complicated deliveries in which the baby’s shoulder becomes stuck behind the pubic bone. Several different techniques can be used to extract the baby when this occurs. "Our ultimate goal is to use the device to figure out which is the best technique to use in these complicated deliveries," Gurewitsch said. "We want to find the technique that requires you to use the least amount of force."

The device must be calibrated to each user. This is done either shortly before or after the delivery, when the physician or midwife’s forearm muscle impulses are recorded at rest and while pulling with five pounds of force, then 10 pounds, as measured by a dynamometer. The students’ device can then produce an accurate record of the force used during delivery by comparing it to the calibration readings.

Beyond the delivery room, the student inventors believe their device could be used for training and research in orthopedic surgery, which can require the use of great force, and in preventing sports injuries. For example, a baseball pitcher might use the device to learn how to throw with considerable force, but not enough to cause an injury. The four students and their instructor, Robert Allen, have obtained a provisional patent covering their device.

The four student inventors are:

William Tam, 22, of Boston, served as the team leader. He received his bachelor’s degree in biomedical engineering from Johns Hopkins in May and is now a biomedical engineering doctoral student at Johns Hopkins. "I have been involved with design teams since my freshman year, and the teams always find innovative ways to solve their proposed biomedical problems," Tam said. "The course allowed me to apply what I learned into my designs, and I tried to pass the knowledge on to younger students in the class."

Yen Shi (Gillian) Hoe, 20, of Singapore, is a senior majoring in biomedical engineering at Johns Hopkins. "This was such a great hands-on experience," she said. "It was so exciting to bring our wireless instrument into the delivery room, where the doctors could use it without interfering with their tactile senses."

I-Jean Khoo, 23, of Singapore, received her bachelor’s degree in biomedical engineering from Johns Hopkins in May. She is now working on a master’s degree in biotechnology at the University of Pennsylvania. "Science is a definitive field, and I’d like to make a tangible contribution to society through scientific discovery," she said.

Stanley Huang, 23, of Toronto, received his bachelor’s degree in biomedical engineering from Johns Hopkins in May. He is currently pursuing a master’s degree in biomedical engineering at Johns Hopkins. "We went through many prototypes before we settled on the design of this device," he said. "It was having trouble picking up signals from the muscles, so we had to use more sensitive electronics. I liked the idea of applying what I’d learned to make something useful."

Phil Sneiderman | JHU
Further information:
http://www.jhu.edu/news_info/news/home03/oct03/wireless.html

More articles from Health and Medicine:

nachricht Illinois team develops first of a kind in-vitro 3D neural tissue model
11.12.2019 | University of Illinois College of Engineering

nachricht Safer viruses for vaccine research and diagnosis
11.12.2019 | University of Queensland

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Self-driving microrobots

11.12.2019 | Materials Sciences

Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings

11.12.2019 | Information Technology

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>