Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sick Kids researchers identify cancer stem cell for brain tumours

15.09.2003


A research team at The Hospital for Sick Children (HSC) and the University of Toronto (U of T), led by Dr. Peter Dirks, has identified for the first time a cancer stem cell in both malignant and benign brain tumours. This discovery may change how brain tumours are studied and how this deadly condition is treated in the future. This research is reported in the September 15, 2003 issue of the scientific journal Cancer Research.



"The discovery of a cancer stem cell for brain tumours means that only a small number of cells in a brain tumour have the ability to drive tumour growth. Many current cancer therapies may fail because they do not kill the cancer-sustaining stem cells. We now have to work on designing therapies that will attack these stem cells," said Dr. Peter Dirks, an HSC neurosurgeon and scientist-track investigator in the Developmental Biology Research Program, and an assistant professor of Neurosurgery at U of T.

Brain tumours are the leading cause of cancer mortality in children and remain difficult to cure despite advances in surgery and drug treatments. In adults, most brain tumours are also amongst the most sinister of cancers with formidable resistance to most therapies.


"We found that cancer stem cells from different tumour types, from aggressive malignant tumours to more slow-growing benign ones, share similar properties to each other as well as to normal brain stem cells. This suggests that mutations that lead to cancer formation may have originated in the brain’s own small numbers of stem cells," said Dr. Sheila Singh, the paper’s lead author, an HSC neurosurgery resident and U of T graduate student who is enrolled in HSC’s Clinician-Scientist Training Program.

The biology of the brain tumour stem cell may also shed light on metastases (tumour spread). The non-stem cells in the tumour may break off and spread, but may not be able to grow at distant sites. "It is possible that only the tumour stem cells will be able to grow at distant sites. If this is indeed the case, then the destruction of tumour stem cells may also be important for preventing metastatic disease," added Dr. Dirks.

Next stages of this research involve genetic studies of the purified cancer stem cells to find new genes that are critical for cancer stem cell growth. The identification of these genes is important for determining new targets for brain tumour therapy. Dr. Dirks’ laboratory is also investigating whether a patient’s cancer stem cells alone can cause growth of the patient’s tumour in a mouse. If the tumour resembles the patient’s original tumour, this may lead to a mouse model for the tumour type.


Dr. Dirks’ laboratory is located in the Arthur and Sonia Labatt Brain Tumour Research Centre at The Hospital for Sick Children. Other members of the research team included Dr. Ian Clarke, Dr. Mizuhiko Terasaki, Victoria Bonn, and Dr. Cynthia Hawkins, all from The Hospital for Sick Children, and Dr. Jeremy Squire from the Ontario Cancer Institute and the University of Toronto.

This research was supported by The Terry Fox Foundation through the National Cancer Institute of Canada, the Neurosurgery Research and Education Foundation with funds from the American Brain Tumor Association, and The Hospital for Sick Children Foundation including gifts from Arthur and Sonia Labatt and the Baker family.

The Hospital for Sick Children, affiliated with the University of Toronto, is Canada’s most research-intensive hospital and the largest centre dedicated to improving children’s health in the country. Its mission is to provide the best in family-centred, compassionate care, to lead in scientific and clinical advancement, and to prepare the next generation of leaders in child health. For more information, please visit http://www.sickkids.ca.

Laura Greer | EurekAlert!
Further information:
http://www.utoronto.ca/
http://www.sickkids.ca

More articles from Health and Medicine:

nachricht Shipment tracking for "fat parcels" in the body
14.10.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Antibody-based eye drops show promise for treating dry eye disease
14.10.2019 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

How to control friction in topological insulators

14.10.2019 | Physics and Astronomy

The shelf life of pyrite

14.10.2019 | Earth Sciences

Shipment tracking for "fat parcels" in the body

14.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>