Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sick Kids researchers identify cancer stem cell for brain tumours

15.09.2003


A research team at The Hospital for Sick Children (HSC) and the University of Toronto (U of T), led by Dr. Peter Dirks, has identified for the first time a cancer stem cell in both malignant and benign brain tumours. This discovery may change how brain tumours are studied and how this deadly condition is treated in the future. This research is reported in the September 15, 2003 issue of the scientific journal Cancer Research.



"The discovery of a cancer stem cell for brain tumours means that only a small number of cells in a brain tumour have the ability to drive tumour growth. Many current cancer therapies may fail because they do not kill the cancer-sustaining stem cells. We now have to work on designing therapies that will attack these stem cells," said Dr. Peter Dirks, an HSC neurosurgeon and scientist-track investigator in the Developmental Biology Research Program, and an assistant professor of Neurosurgery at U of T.

Brain tumours are the leading cause of cancer mortality in children and remain difficult to cure despite advances in surgery and drug treatments. In adults, most brain tumours are also amongst the most sinister of cancers with formidable resistance to most therapies.


"We found that cancer stem cells from different tumour types, from aggressive malignant tumours to more slow-growing benign ones, share similar properties to each other as well as to normal brain stem cells. This suggests that mutations that lead to cancer formation may have originated in the brain’s own small numbers of stem cells," said Dr. Sheila Singh, the paper’s lead author, an HSC neurosurgery resident and U of T graduate student who is enrolled in HSC’s Clinician-Scientist Training Program.

The biology of the brain tumour stem cell may also shed light on metastases (tumour spread). The non-stem cells in the tumour may break off and spread, but may not be able to grow at distant sites. "It is possible that only the tumour stem cells will be able to grow at distant sites. If this is indeed the case, then the destruction of tumour stem cells may also be important for preventing metastatic disease," added Dr. Dirks.

Next stages of this research involve genetic studies of the purified cancer stem cells to find new genes that are critical for cancer stem cell growth. The identification of these genes is important for determining new targets for brain tumour therapy. Dr. Dirks’ laboratory is also investigating whether a patient’s cancer stem cells alone can cause growth of the patient’s tumour in a mouse. If the tumour resembles the patient’s original tumour, this may lead to a mouse model for the tumour type.


Dr. Dirks’ laboratory is located in the Arthur and Sonia Labatt Brain Tumour Research Centre at The Hospital for Sick Children. Other members of the research team included Dr. Ian Clarke, Dr. Mizuhiko Terasaki, Victoria Bonn, and Dr. Cynthia Hawkins, all from The Hospital for Sick Children, and Dr. Jeremy Squire from the Ontario Cancer Institute and the University of Toronto.

This research was supported by The Terry Fox Foundation through the National Cancer Institute of Canada, the Neurosurgery Research and Education Foundation with funds from the American Brain Tumor Association, and The Hospital for Sick Children Foundation including gifts from Arthur and Sonia Labatt and the Baker family.

The Hospital for Sick Children, affiliated with the University of Toronto, is Canada’s most research-intensive hospital and the largest centre dedicated to improving children’s health in the country. Its mission is to provide the best in family-centred, compassionate care, to lead in scientific and clinical advancement, and to prepare the next generation of leaders in child health. For more information, please visit http://www.sickkids.ca.

Laura Greer | EurekAlert!
Further information:
http://www.utoronto.ca/
http://www.sickkids.ca

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>