Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon researchers developing new ways to store tissue, organs

12.08.2003


Developing more efficient ways of storing tissues and organs



Carnegie Mellon University’s Yoed Rabin and Paul Steif have received $1.3 million over the next four years from the National Institutes of Health to develop more efficient ways of storing transplant tissue and organs in cryogenic temperatures. Mechanical Engineering professors Rabin and Steif are working to improve techniques of cryopreservation, the process of storing biological materials in extremely low temperatures.

"Our long-term goal is to reduce the destructive mechanical stresses induced during the cryopreservation of organs and tissues of a significant size," said Rabin, who specializes in heat transfer in biological systems.


"It is a little bit like watching an ice cube break up in a glass of water and trying to figure out what made the ice fracture and devise ways to prevent it from cracking," Rabin said.

Both Rabin and Steif are charged with developing engineering tools to monitor when these breakups are likely to occur and develop improved methods for storing transplant tissues such as blood vessels and heart valves, and ultimately for life-saving organs like kidneys, lungs or the heart.

The Carnegie Mellon researchers will work with Chicago-based Organ Recovery System, a company specializing in the clinical preservation and storage of tissues.

"We are extremely pleased to be working with Carnegie Mellon and its expert research team," said Mike Taylor, vice president of research and development for Organ Recovery System. Taylor said his company will provide Carnegie Mellon researchers with their proprietary preservation technologies for blood vessel systems to test and study the thermal stresses during cryopreservation.

At present, clinicians are able to store embryos, sperm and stem cells in freezers, but Carnegie Mellon researchers want to develop systems for the safe storage of more complex tissues and organs, which could offer a significant breakthrough in the treatment of diseases and perhaps broaden the cache of transplant organs available to an increasing number of patients. As of August 1, 2003, 82,129 people nationwide were waiting for an organ transplant compared with 53,167 in 1997, according to the Richmond, Va.-based United Network for Organ Sharing. In addition, new preservation technology emerging from this basic research will be important as an enabling technology for the emerging disciplines of tissue engineering and regenerative medicine that seek to replace damaged or diseased tissues with new living material

Chriss Swaney | EurekAlert!
Further information:
http://www.cmu.edu/

More articles from Health and Medicine:

nachricht Finding new clues to brain cancer treatment
21.02.2020 | Case Western Reserve University

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish

24.02.2020 | Life Sciences

KIST researchers develop high-capacity EV battery materials that double driving range

24.02.2020 | Materials Sciences

How earthquakes deform gravity

24.02.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>