Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gel put springiness back into old lenses

07.08.2003


A neat fix for ageing eyes could be tested in humans next year. The treatment, which involves replacing the contents of the lens in the eye with a soft polymer gel, could allow millions of people to throw away their reading glasses.



"At first, we see it being used as an improvement to current cataract surgery," says Arthur Ho at the University of New South Wales, a key member of the Australian government’s multinational Vision Cooperative Research Centre (Vision CRC) that is working on the technique. "But once it is shown to be safe and effective, we think that more and more younger people who are starting to need reading glasses will adopt it as well."

The eye’s lens focuses by changing shape. When muscles in the eye relax, the lens is pulled flat to focus on distant objects. When they contract, the lens returns to a fatter shape, bringing closer objects into focus. But as we age, our lenses harden, preventing them reforming into their fatter shape: the lenses of 40-year-old people have only a quarter of their capacity to change shape, or "accommodate", as they did at birth. After the age of 45, most people need reading glasses, or bifocal glasses.


In the late 1980s, Jean-Marie Parel at the University of Miami showed that replacing the contents of an ageing rhesus monkey’s lens with silicone oil could restore its ability to focus. But silicone oil gradually leaks from the lens capsule. Since then, researchers have been working to develop a polymer that has both the same refractive index as the human crystalline lens and also the right biomechanical properties.

After evaluating more than 30 different polymer formulations created at another Australian research institute, CSIRO Molecular Science in Melbourne, Ho thinks his group has cracked it. Vision CRC is staying tight-lipped about the new formulation while it is being patented. All the team will say is that it is a siloxane-based material, which is cured with UV or visible light after injection to turn it from a liquid to a gel.

Tests on rabbit and monkey eyeballs show the latest formulation has the same average refractive index as a healthy lens and could provide up to 9.5 dioptres of accommodation, enough to allow reading at a distance of only 10 centimetres. So far, the group has conducted tests on only a few human eyes and found the treatment provided between around 6 to 8.5 dioptres of accommodation- more than enough to permit easy reading.

Implanting the gel would be very similar to current cataract surgery, except that the lens is not replaced. Instead, after making a small incision in the cornea, a doctor would cut a tiny hole in the lens capsule and suck out the contents. The gel, which has the consistency of thick oil, is pumped in and a burst of UV or visible light transforms it into a jelly. "This could be a quick, 15-minute procedure," says Ho.

The gel-injection surgery has been perfected on rabbits by a team led by Parel in Miami. But adult rabbit eye lenses do not accommodate, so the next step is to assess the technique in live rhesus monkeys, which have similar eyes to humans. This work should begin by the end of this year, Ho says, "and in the best-case scenario, we should begin human trials by the end of next year."

Hugh Taylor, director of the Centre for Eye Research Australia in Melbourne, is enthusiastic. "This technique has enormous potential," he says. "It will totally change ophthalmic surgery, if we can get it right." New Scientist issue 9 August 2003.

| EurekAlert!

More articles from Health and Medicine:

nachricht Sugar entering the brain during septic shock causes memory loss
23.04.2019 | Rensselaer Polytechnic Institute

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>