Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gel put springiness back into old lenses

07.08.2003


A neat fix for ageing eyes could be tested in humans next year. The treatment, which involves replacing the contents of the lens in the eye with a soft polymer gel, could allow millions of people to throw away their reading glasses.



"At first, we see it being used as an improvement to current cataract surgery," says Arthur Ho at the University of New South Wales, a key member of the Australian government’s multinational Vision Cooperative Research Centre (Vision CRC) that is working on the technique. "But once it is shown to be safe and effective, we think that more and more younger people who are starting to need reading glasses will adopt it as well."

The eye’s lens focuses by changing shape. When muscles in the eye relax, the lens is pulled flat to focus on distant objects. When they contract, the lens returns to a fatter shape, bringing closer objects into focus. But as we age, our lenses harden, preventing them reforming into their fatter shape: the lenses of 40-year-old people have only a quarter of their capacity to change shape, or "accommodate", as they did at birth. After the age of 45, most people need reading glasses, or bifocal glasses.


In the late 1980s, Jean-Marie Parel at the University of Miami showed that replacing the contents of an ageing rhesus monkey’s lens with silicone oil could restore its ability to focus. But silicone oil gradually leaks from the lens capsule. Since then, researchers have been working to develop a polymer that has both the same refractive index as the human crystalline lens and also the right biomechanical properties.

After evaluating more than 30 different polymer formulations created at another Australian research institute, CSIRO Molecular Science in Melbourne, Ho thinks his group has cracked it. Vision CRC is staying tight-lipped about the new formulation while it is being patented. All the team will say is that it is a siloxane-based material, which is cured with UV or visible light after injection to turn it from a liquid to a gel.

Tests on rabbit and monkey eyeballs show the latest formulation has the same average refractive index as a healthy lens and could provide up to 9.5 dioptres of accommodation, enough to allow reading at a distance of only 10 centimetres. So far, the group has conducted tests on only a few human eyes and found the treatment provided between around 6 to 8.5 dioptres of accommodation- more than enough to permit easy reading.

Implanting the gel would be very similar to current cataract surgery, except that the lens is not replaced. Instead, after making a small incision in the cornea, a doctor would cut a tiny hole in the lens capsule and suck out the contents. The gel, which has the consistency of thick oil, is pumped in and a burst of UV or visible light transforms it into a jelly. "This could be a quick, 15-minute procedure," says Ho.

The gel-injection surgery has been perfected on rabbits by a team led by Parel in Miami. But adult rabbit eye lenses do not accommodate, so the next step is to assess the technique in live rhesus monkeys, which have similar eyes to humans. This work should begin by the end of this year, Ho says, "and in the best-case scenario, we should begin human trials by the end of next year."

Hugh Taylor, director of the Centre for Eye Research Australia in Melbourne, is enthusiastic. "This technique has enormous potential," he says. "It will totally change ophthalmic surgery, if we can get it right." New Scientist issue 9 August 2003.

| EurekAlert!

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>