Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale researcher discovers "brain temperature tunnel"

16.07.2003


Yale researcher M. Marc Abreu, M.D., has identified an area of the brain he calls the brain temperature tunnel, which transmits brain temperature to an area of skin and has the potential to prevent death from heat stroke and hypothermia, and detect infectious diseases such as Severe Acute Respiratory Syndrome (SARS).

Abreu, a postdoctoral fellow in the Department of Ophthalmology at Yale School of Medicine, found that a small area of skin near the eyes and the nose is the point of entry for the brain temperature tunnel. His research shows that this area is connected to a thermal storage center in the brain, and the area has the thinnest skin and the highest amount of light energy. He has constructed patches and eyeglasses designed to continuously measure brain temperature at this entry point.

Unlike other vital signs like heart rate, blood pressure and respiratory rate, which can be monitored continuously, core body temperature measurement cannot be currently measured continuously and non-invasively.



"With the discovery of the brain temperature tunnel, sunglasses and eyeglasses will serve not only visual function, but also functions that sustain and enhance human life and performance," said Abreu.

Abreu said this discovery could impact a host of health issues such as athletic performance and training, enhancing safety and performance of athletes, firefighters, members of the military and outdoor recreationists. Abreu said the discovery could also help protect the world food supply and improve food safety by continuous monitoring of infectious diseases in animals such as foot-and-mouth disease, bovine tuberculosis, anthrax and mad cow disease.

For those who are sick at home and in hospitals, Abreu said this discovery could also provide continuous temperature monitoring without the need for nurse intervention. "One of the most important causes of death is hospital infection, which kills more than 100,000 patients a year in the United States," said Abreu. "The inability to detect temperature changes in a timely fashion can lead to spread of infection and even cause death. Monitoring the brain temperature tunnel can detect infection early, so timely therapy can be administered and complications prevented."

Abreu said, "The brain temperature tunnel has enabled the creation of systems that enhance performance while maximizing safety in hot or cold temperatures and preventing dehydration or overhydration."

Abreu explains that when athletes, military personnel, construction workers and firefighters die from heat stroke, it is because the brain temperature rises rapidly to dangerous levels and lack of timely detection and intervention causes brain damage. He further explains that physical performance is decreased because the blood is used for cooling the body. The high temperature in the brain can also lead to thermal induced injury and impaired cognitive function.

"Monitoring brain temperature will also enable women to use a natural method for tracking fertility and birth control," said Abreu. "Automated detection of ovulation can also enhance programs for artificial insemination in animals on dairy farms and in zoos."

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Health and Medicine:

nachricht Study shows novel protein plays role in bacterial vaginosis
13.12.2019 | University of Arizona Health Sciences

nachricht Illinois team develops first of a kind in-vitro 3D neural tissue model
12.12.2019 | University of Illinois College of Engineering

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>