Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nottingham academics develop new nanotechnology to treat brain tumours

04.06.2003


Academics at The University of Nottingham are developing new nanotechnology that could be used to treat brain tumours more effectively by reducing the serious side-effects associated with anti-cancer drugs.

A team led by Dr Martin Garnett in the School of Pharmaceutical Sciences has been awarded a £206,000 grant from the Biotechnology and Biological Sciences Research Council to continue investigations on the preparation of nanoparticles for delivering drugs to brain tumours.

Anti-cancer drugs are problematic because they can cause significant problems in other non-diseased areas of the body too, leading to nasty side effects for the patient. For brain tumours this is doubly difficult because, for most drugs, access to tumours can be even trickier.



The Nottingham academics are looking at changing the behaviour of anti-cancer molecules by putting them into tiny particles called nanoparticles, which are one ten-thousandth of a millimetre in diameter. These nanoparticles are made from polymers - molecules made from a long chain of chemical units. Using a ’’water-loving’’ polymer on the outside, and a ’’water-hating’’ polymer on the inside, allows the particles to assemble themselves with the drugs held in the centre of the nanoparticles.

Because of their size, these nanoparticles can only get out of the blood stream at the tumour and in the liver, preventing toxicity in many other tissues in the body.

The ’’water-loving’’ polymer on the surface of these particles greatly reduces the uptake of the drug to the liver, ensuring that it travels to the brain tumour more effectively. The polymers previously available for making nanoparticles were only capable of carrying small amounts of a drug and couldn’’t hold on to the drug for very long, leading the academics to design some new polymers in an attempt to overcome these problems.

Developing and testing new delivery systems for drugs can also be a problem because of the toxicity of anti-cancer drugs. The academics are overcoming this problem by using drugs that are used to treat the inflammation of the brain that accompanies brain tumours, but are much less harmful to the patient and easier for the researchers to work with.

The idea for this new technology first came as part of discussions within the University’’s Children’’s Brain Tumour Research Centre which involves a number of academics from different disciplines. Co-ordinated by Dr David Walker the centre investigates the causes and potential new treatments for brain tumours in children.

The project is part of a two-centre award from the BBSRC totalling £409,000 which involves the synthesis of new polymers by scientists Dr Gillian Hutcheon and Dr Sean Higgins at Liverpool John Moores University and the development of nanoparticles by Dr Garnett and colleague Dr Paraskevi Kallinteri at The University of Nottingham.

The new project builds on results from a previous BBSRC grant, which have shown that the new polymers have allowed the researchers to incorporate anti-inflammatory drugs into nanoparticles in much greater amounts than with previous polymers and that they also hold on to the drugs much more firmly.

A patent has been filed on the use of these polymers, which should help in the future development of these delivery systems, and the drug release properties of these polymers are now being investigated by research student Weina Meng, whose work has been partly funded by the Children’’s Brain Tumour Research Centre.

The new project will develop these polymers further to discover whether it is possible to incorporate a much wider variety of drugs, including toxic anti-cancer drugs, and also to demonstrate that they work well in test systems.

Dr Garnett said: "I am very pleased with the progress in this project so far. The new polymers have exceeded my expectations and the flexibility of the synthesis of these polymers offers hope that they should be suitable for delivering a wide range of drugs.

"While there is still a long road ahead, we hope that this work will lead to clinical trials of these delivery systems and, eventually, a reduction in the side effects that patients suffer as a result of being treated with anti-cancer drugs."

Lyn Heath-Harvey | alfa
Further information:
http://www.nottingham.ac.uk/public-affairs/index.html

More articles from Health and Medicine:

nachricht Correct antibiotic dosing could preserve lung microbial diversity in cystic fibrosis
22.02.2019 | Children's National Health System

nachricht Researchers find trigger that turns strep infections into flesh-eating disease
19.02.2019 | Houston Methodist

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>