Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic proves new heart muscle cells can come from bone marrow

11.03.2003


Mayo Clinic researchers have proven for the first time that cells produced by the bone marrow can form new heart-muscle cells in adults, providing an important boost to research that could enable the body to replace heart muscle damaged by heart attack. The findings are now available online and will be published tomorrow in Circulation: Journal of the American Heart Association.



"Until recently, the heart has been seen as an organ that cannot be healed," says Noel Caplice, M.D., the Mayo Clinic cardiologist who led the study. "Heart-attack damage to the myocardium, or heart muscle, was considered irreversible. This study points the way to a process that could lead to heart repair."

The researchers studied four female patients with leukemia who had survived 35 to 600 days after receiving bone-marrow transplants from male donors. Heart tissue samples were examined at autopsy using special staining techniques, which showed that a small portion of the heart-muscle cells, or cardiomyocytes, contained male genetic material and had therefore originated from the donor marrow. Of the more than 80,000 cell nuclei examined, about 1 in 425 (.23 percent) contained the y chromosome.


The study is important because it is the first confirmation that progenitor cells from outside the heart are capable of forming new heart muscle cells. "These progenitor cells are produced by the bone marrow and circulate in the blood," explains Dr. Caplice. "They are like stem cells in that they have potential to develop into various kinds of cells. Given the right biological signals, we have now shown they can become heart cells."

Dr. Caplice says the study has significant implications for future research. "Under normal conditions, with less than one percent of heart-muscle cells originating from these progenitor cells, they obviously are not adding much to the heart’s pumping strength. But if we can determine the signaling mechanism that causes progenitor cells to develop into cardiomyocytes, we may be able to boost the response and induce more of them to proceed in that direction. A growth hormone delivered to the heart could perhaps lead to formation of new muscle around an area of scar tissue, so the heart could actually be healed after being damaged by heart attack. This study provides an important validation of the potential for this new line of research," Dr. Caplice concludes.

Additional Contact Information:
Lee Aase
507-266-2442 (days)
507-284-2511 (evenings)

Lee Aase | EurekAlert!
Further information:
http://www.mayo.edu/

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>