Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccine technique shows potential against common form of lung cancer

14.02.2003


In a demonstration of vaccine therapy’s potential for treating lung cancer, Dana-Farber Cancer Institute scientists and their associates report that a prototype vaccine boosted the natural immune response to tumors in a small group of patients with advanced non-small cell lung cancer (NSCLC). Moreover, the vaccine was found to be non-toxic and well-tolerated.



Published in the Feb. 15 issue of the Journal of Clinical Oncology, findings from the Phase I clinical trial will provide an impetus for further efforts to develop a vaccine against NSCLC, a difficult-to-treat condition that accounts for roughly 80 percent of all lung cancer cases. (Phase I trials are designed primarily to assess the safety of an experimental treatment.)

"This work represents a new approach to a vaccine for lung cancer patients,” says senior author Glenn Dranoff, MD, of Dana-Farber. "We’re still at an early stage, but the results of this study are encouraging. They offer a ’proof of principle’ that this technique can strengthen the normal immune response to NSCLC tumors and will help form the basis for testing the vaccine in patients with earlier stage lung cancer."


The technique was originally developed for patients with advanced melanoma, a form of cancer that begins in the skin but can be deadly if allowed to spread to other parts of the body.

The researchers created the melanoma vaccine by removing a portion of a patient’s tumor and using specially equipped viruses to insert a gene known as GM-CSF into the tumor cells. After being radiated and injected into the patient, the manipulated tumor cells began producing the granulocyte-macrophage colony-stimulating factor (GM-CSF) protein, which acted as a magnet for an immune system attack on tumor cells. As the researchers had hoped, the vaccine elicited a potent, long-lasting immune response targeted at the melanoma tumor cells and produced only minor side effects.

In the lung cancer study, researchers developed vaccines for 34 of the 35 enrolled patients with metastatic, or spreading, NSCLC. Nine of these patients had to withdraw from the study after their disease progressed rapidly, but researchers found heightened levels of immune-system cells in 18 of 25 patients whose condition could be assessed after vaccination. Tumor samples removed after vaccination showed infiltration by immune-system cells and tumor-cell death in three of six patients. Side effects were minor, mostly involving irritation at the site of the vaccine injection.

Two patients, the removal of whose tumors for vaccine preparation left them with no evidence of the disease, remained disease-free more than three years after vaccination. Five patients had periods of stable disease ranging from three to 33 months.

"The results demonstrate that the technique can raise antitumor immunity in some patients with NSCLC," states Dranoff, who is also an associate professor of medicine at Harvard Medical School. "It is important to keep these findings in proper perspective: they are promising but still preliminary. More research needs to be done to see if these results occur in larger studies and in people with earlier stages of NSCLC."

Ravi Salgia, MD, PhD, of Dana-Farber, and Thomas Lynch, MD, of Massachusetts General Hospital, were first authors of the paper. Other contributors are based at Dana-Farber, Children’s Hospital Boston, Massachusetts General Hospital, and Cell Genesys of Foster City, Calif.



Funding for the study was provided by the National Institutes of Health, the Cancer Research Institute, the Leukemia and Lymphoma Society, and Cell Genesys.

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.


Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu/

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>