Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zengen, Inc. announces novel approach to reduce organ rejection

17.12.2002


Study in Transplantation provides strong support for the development of therapeutics utilizing company’s proprietary peptide technology



Zengen, Inc. announced today that its scientists have discovered a novel approach to reduce organ rejection based on the Company’s proprietary research with alpha-Melanocyte-Stimulating Hormone (a-MSH). The research shows that treatment with the a-MSH peptide caused a significant increase in allograft (transplanted tissue) survival and a marked decrease in leukocyte (or white blood cell) infiltration, one of the main causes of infection leading to organ rejection. The study entitled, "a-Melanocyte-Stimulating Hormone Protects the Allograft in Experimental Heart Transplantation," appears in the December 15th issue of Transplantation.

"These results demonstrate that the protection of the transplanted tissue from early injury with a-MSH treatment can postpone rejection," said James Lipton, Ph.D., chief scientific officer and director of Zengen. "This is an important and encouraging advance in the field of organ transplantation and these data provide strong support for the development of anti-rejection therapies utilizing our proprietary peptide molecules based on the larger a-MSH peptide."


The preclinical study was designed to determine whether a-MSH treatment protects the allograft and prolongs survival in experimental heart transplantation, in the absence of immunosuppressive therapies. Donor cardiac grafts (Brown Norway) were transplanted into the abdomen of recipient (Lewis) rats. Treatments consisted of intraperitoneal injections of the a-MSH peptide or saline from the time of transplantation until sacrifice or spontaneous rejection.

Results show that median survival time of the peptide-treated organs was significantly prolonged (10 days) as compared to the untreated ones (6 days) (p<0.0001). Histopathologic and gene expression patterns of allografts from treated animals, examined 24 hours after transplantation, revealed substantial benefit over untreated animals and persisted over time. At four days post-transplantation, graft histopathologic appearance was healthier in treated animals. Further, the research revealed that treatment with a-MSH caused a marked inhibition of ET-1 gene expression. ET-1 is the most potent endogenous vasoconstrictor yet identified and contributes to reperfusion injury, transplant rejection and several cardiovascular diseases.

"This is a remarkable increase in duration in non-immunosuppressed transplanted organs, as data from this study and others show that hearts transplanted in these animal models are invariably rejected within six to seven days," added Dr. Lipton. "The beneficial effects of a-MSH treatment observed in these studies could be even more pronounced in clinical transplantation, particularly with regard to its significant role in ET-1 inhibition. We are excited by these findings, especially as we advance our peptide technology program in organ transplantation."


About Zengen, Inc.
Incorporated in 1999, Zengen, Inc. is a biopharmaceutical company focused on discovering, developing and commercializing innovative products to treat and prevent infection and inflammation through application of its proprietary peptide technologies. Zengen’s novel molecules were developed from more than 25 years of original research in the US, Europe and Asia on peptide molecules derived from alpha-Melanocyte-Stimulating Hormone (a-MSH). A naturally occurring molecule, a-MSH modulates inflammatory and immune responses. James Lipton, Ph.D., Zengen’s chief scientific officer, chairman of the scientific advisory board and director, and his collaborators first demonstrated that a-MSH possesses anti-inflammatory properties and uncovered the specific activity of the carboxy-terminal tripeptide region (C-terminal peptide) of the a-MSH peptide. These discoveries led to the development of Zengen’s proprietary peptide molecules, including CZEN 002, a synthetic octapeptide. There is abundant evidence of the anti-inflammatory and anti-infective activity of these novel molecules from both in vivo and in vitro research. Zengen is currently conducting phase I/II clinical trials with CZEN 002 in vaginitis. For more information about Zengen, please visit www.zengen.com.

Zengen, Inc. Forward-Looking Statement Disclaimer

This announcement may contain, in addition to historical information, certain forward-looking statements that involve risks and uncertainties. Such statements reflect management’s current views and are based on certain assumptions. Actual results could differ materially from those currently anticipated as a result of a number of factors. The company is developing several products for potential future marketing. There can be no assurance that such development efforts will succeed, that such products will receive required regulatory clearance or that, even if such regulatory clearance were received, such products would ultimately achieve commercial success.

Kathy Vincent | EurekAlert!
Further information:
http://www.zengen.com/

More articles from Health and Medicine:

nachricht Protein shapes matter in Alzheimer's research
20.05.2020 | Michigan Technological University

nachricht Genetic tradeoffs do not stop evolution of antibiotic resistance
19.05.2020 | Universität zu Köln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

Im Focus: When proteins work together, but travel alone

Proteins, the microscopic “workhorses” that perform all the functions essential to life, are team players: in order to do their job, they often need to assemble into precise structures called protein complexes. These complexes, however, can be dynamic and short-lived, with proteins coming together but disbanding soon after.

In a new paper published in PNAS, researchers from the Max Planck Institute for Dynamics and Self-Organization, the University of Oxford, and Sorbonne...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New gravitational-wave model can bring neutron stars into even sharper focus

22.05.2020 | Physics and Astronomy

A replaceable, more efficient filter for N95 masks

22.05.2020 | Materials Sciences

Capturing the coordinated dance between electrons and nuclei in a light-excited molecule

22.05.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>