Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting more mileage out of cord blood

22.10.2002


Blood from human umbilical cords is a rich source of hematopoeitic stem cells, the progenitors that can reconstitute all of the different cell types in our blood, including oxygen-carrying red blood cells and white blood cells that are our major defense against infections. Cord blood contains a higher percentage of stem cells than adult bone marrow (another source of blood stem cells), and has several additional advantages: cord blood stem cells divide faster than stem cells from bone marrow and have longer telomeres. In addition, cord blood contains fewer immune cells, and those present have not yet undergone the extensive education process that allows them to distinguish between self and non-self. This is important in the context of transplantation, where host cells can attack donor cells and vice versa (a process known as graft-versus-host disease that is responsible for many deaths after bone marrow transplantation).



One obstacle to using cord blood more routinely as a source of stem cells in transplantation patients is the amount of blood required. Clinical trials have established that higher numbers of blood cells per kilogram of body weight of the recipient are associated with improved transplantation outcome. However, the amount of blood cells collected from cords is often not sufficient for an adult recipient. Scientists have therefore attempted to culture and expand cord blood-derived cells before transplanting them into patients. As they report in the October 21 issue of the Journal of Clinical Investigation, Irwin Bernstein and colleagues (Fred Hutchinson Cancer Center, Seattle, and University of Washington, Seattle), have been successful in doing so. Exposing human cord blood to a particular molecule called Delta-1 under defined culture conditions resulted in an over 100-fold increase in the number of the most immature stem cells. Other progenitors that maintained the potential to differentiate into multiple different blood cell types were also expanded.

When the scientists harvested the cells after the expansion and transplanted them into immuno-deficient mice (who in many ways resemble leukemia patients who have undergone radiation treatment prior to a bone-marrow transplant), they found that the cultured cells were more potent in reconstituting the recipients blood and immune cell systems that non-cultured cells or those cultured in the absence of Delta-1.


These results demonstrate that it is possible to increase the number of stem cells derived from cord blood in culture, and suggests that such strategies could be employed to increase the utility of cord blood as a source for human transplantation.


CONTACT:
Irwin D. Bernstein
Dept. Of Pediatric Oncology
Fred Hutchinson Cancer Research Center
1100 Fairview Ave. N
Seattle, WA 98109
PHONE: 206-667-4886
FAX: 206-667-6084
E-mail: ibernste@fhcrc.org

Brooke Grindlinger, PhD | EurekAlert!

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>