Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach to replacing immune cells shrink tumors in patients with melanoma

20.09.2002


A new approach to cancer treatment that replaces a patient’s immune system with cancer-fighting cells can lead to tumor shrinkage, researchers report today in the journal Science*. The study demonstrates that immune cells, activated in the laboratory against patients’ tumors and then administered to those patients, can attack cancer cells in the body.



The experimental technique, known as adoptive transfer, has shown promising results in patients with metastatic melanoma who have not responded to standard treatment. With further research, scientists hope this approach may have applications to many cancer types, as well as infectious diseases such as AIDS.

In the study, 13 patients with metastatic melanoma (a deadly form of skin cancer) who had not responded to standard treatments were treated with immune cells produced in the laboratory specifically to destroy their tumors. The treatment resulted in at least 50 percent tumor shrinkage in six of the patients, with no growth or appearance of new tumors. Four additional patients had some cancer growths disappear.


Researchers have tried previously to treat cancer with immune cells but the cells did not survive well in the body. "In the past, only a fraction of a percent of the cells we injected were able to survive, and they would persist for only a few days," said Steven A. Rosenberg, M.D., Ph.D., of the National Cancer Institute, the lead researcher on the study.

Improvements in the way immune cells are generated in the laboratory and the way patients’ bodies are prepared to receive them, however, have led to dramatically different results. "We have been able to generate a very large number of immune cells that appear in the blood and constitute a majority of the immune system of the patient. These persist for over four months and are able to attack the tumor," Rosenberg said.

The adoptive transfer technique fights cancer with T cells, immune cells that recognize and kill foreign cells that have invaded the body. Researchers used a small fragment of each patient’s melanoma tumor to grow T cells in the laboratory, using T cells originally taken from the patients. Exposure to the tumor activated the immune cells so that they would recognize and attack cells from each specific cancer.

Once the T cells had multiplied to a sufficient number to be used for treatment, they were administered to patients. Patients were also given a high dose of a protein called interleukin-2 (IL-2), which stimulates continued T cell growth in the body. Prior to the immunotherapy, chemotherapy had been used to deplete patients’ own immune cells, which had proven ineffective at fighting the cancer. Diminishing the old cells provided an opportunity for the new T cells to repopulate patients’ immune systems. Analysis of blood and tumor samples from many of the patients who responded favorably to the treatment revealed that the administered immune cells were thriving, multiplying rapidly, and attacking tumor tissue. T cells activated against melanoma became the major component in patients’ immune systems. They persisted for several months and were able to destroy metastases throughout the body.

Over time, patients’ old immune systems recovered, restoring their ability to fight infections. Researchers report that among the patients in the study, only occasional opportunistic infections developed during treatment.

Other side effects were mild autoimmune disorders. T cells act by recognizing a protein fragment called an antigen on the outside of the tumor cells. Antigens found on tumor cells may also be found on certain normal cells in the body, making them vulnerable to attack. Autoimmune effects among the patients in the study were mild and easily controlled.

Although the treatment is highly experimental, researchers are optimistic that it may, in the future, extend beyond the treatment of patients with melanoma. It should be possible, they say, to raise immune cells that will recognize and attack many tumor types.

Similarly, the same technique could potentially be used to treat some infectious diseases, such as AIDS.

NCI Press Office | EurekAlert!
Further information:
http://www.cancer.gov

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>