Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach by Cornell researcher could enable treatment of some cancers with retinoic acid with little or no side effects

14.08.2002


For some time doctors have been using a vitamin A derivative, retinoic acid (RA), to treat several cancers, particularly prostate cancer and leukemia, and they are now experimenting with the drug to treat breast cancer. The great drawback to RA, however, is that it requires high levels of the medication in order to turn genes "on" and "off," often triggering devastating and potentially fatal side effects.



Now, a Cornell University biochemist has learned how to make tumor cells up to 1,000 times more sensitive to RA so that much smaller doses would be required to flick the "on" and "off" switch (a process known as the induction of gene expression).

"This novel strategy for regulating the anticarcinogenic activity of retinoic acid has potential not only for treating tumors but also, perhaps, for protecting high-risk patients preventively," says Noa Noy, a professor of nutritional sciences at Cornell. "We have discovered that a naturally occurring protein in the cell can dramatically enhance the ability of RA to inhibit the proliferation of breast cancer cells, so that much less RA -- perhaps even the amount naturally present in the body -- is required to suppress tumor development."


The new findings are described in two recent articles in Molecular and Cellular Biology (April and July 2002).

RA belongs to a class of compounds known as retinoids that play key roles in regulating gene transcription and, therefore, govern multiple functions in the body, such as cell division and differentiation, immune response and embryonic development. They also control the development and spread of cancer cells, and some, including RA, can inhibit tumor growth by preventing cancer cell proliferation. Retinoids are now in clinical trials for treatment of head, neck and breast cancers, as well as for diabetes, arteriosclerosis and emphysema.

In the body, RA activates a protein in cells known as retinoic acid receptor (RAR) that binds to certain DNA sequences and turns target genes on or off. A typical treatment with RA seeks to activate RAR in order to switch on favorable genes. However, at pharmacological doses, RA and other retinoids are highly toxic. Moreover, cancer patients frequently become resistant to RA therapy over time.

Noy decided to take a different approach by seeking to understand how the gene-transcription activity of RA is regulated by two proteins called cellular retinoic acid-binding proteins (CRABP-I and CRABP-II). These proteins were identified decades ago, but their exact functions remained obscure.

"We have found that as soon as RA binds to CRABP-II, the protein rapidly moves into the cell nucleus, unlike CRABP-I, which keeps RA out of the nucleus. Once in the nucleus, CRABP-II binds to RAR and channels RA to it, thereby activating the transcription factor to turn genes on or off," explains Noy.

Noy has found that CRABP-II greatly enhances the transcriptional activity of retinoic acid receptors by directly targeting RA to them. Therefore, she has been working on introducing CRABP-II to cells to treat cancer. She is looking into patenting her approaches.

Noy also has indications that CRABP-II can slow tumor growth in the presence of very small amounts of RA. In new, as yet unpublished, research, Noy -- in collaboration with nutritional sciences colleague Danny Manor, and Rodney Page and Alexander Nikitin of Cornell’s College of Veterinary Medicine -- studied the effectiveness of CRABP-II in mice with cancer. When tumors in the mice reached half a centimeter, one group received injections of a virus that expressed CRABP-II in the tumors.

"The rate of growth of tumors in the mice that received CRABP-II was dramatically slower," says Noy. "The implication here is that we may not even need to administer RA to treat tumors, but can make use of the RA already present in the body and use CRABP-II to sensitize the tumor to it," she observes.

Noy hopes to perfect the technique so that researchers can develop an approach to introduce CRABP-II in specific tissues and thereby influence target-gene expression.

The research was supported, in part, by the National Institutes of Health, the Swiss National Science Foundation and the Novartis Foundation.

Susan S. Lang | EurekAlert!
Further information:
http://www.nutrition.cornell.edu/faculty/noy.html

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>