Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cause of hepatitis A virulence pinpointed

09.08.2002


Researchers at the National Institute of Allergy and Infectious Diseases (NIAID) have located two genes that give hepatitis A virus (HAV) its virulent properties. The team, led by Suzanne Emerson, Ph.D., also has discovered that deliberately weakened HAV can quickly revert to its naturally occurring, infection-causing form. To be published in the September 1 issue of Journal of Virology, and appearing online this week, these findings indicate that making an improved vaccine for HAV will be a very difficult task.



"As sanitation improves in developing countries, there will be an increased need for inexpensive and easy-to-administer vaccines to prevent hepatitis A, which is transmitted through contaminated food and water," notes Dr. Emerson. HAV is so common in developing countries that almost everyone is infected during childhood (often without becoming noticeably ill) and thereafter is immune to the virus. Improvements in sanitation and water quality, though, make such naturally acquired immunity less likely. Unfortunately, if HAV infection occurs for the first time later in life, it can result in dangerous illness, including severe liver damage.

A vaccine made from killed HAV does exist, but it requires multiple booster shots to be given intramuscularly-an expense and inconvenience that inhibits its use in less developed countries. Scientists at NIAID have been attempting to develop a live, attenuated HAV vaccine. An attenuated vaccine-one made from a deliberately weakened form of the virus-could be given orally in a single dose, a clear advantage to the existing vaccine.


To develop such a vaccine, Dr. Emerson and her coworkers first had to determine which genes give HAV its punch. They compared the genetic make-up of a virulent version of human HAV with that of an attenuated version of the same strain of virus by creating 14 artificial "chimeric" viruses, each of which contained a different combination of genes taken from the parent strains. Monkeys exposed to a virus that contained either of two genes, 2C or VP1/2A, from the virulent parent developed symptoms of hepatitis. When both genes from the virulent parent were present, the disease was markedly more severe. Conversely, chimeras containing mutated forms of 2C and VP1/2A did not cause disease.

Weakening HAV by altering its two virulence-determining genes would seem to be a logical way to produce a hepatitis A vaccine. But when the researchers infected monkeys with just such an attenuated virus, it mutated within those animals, although it did not cause disease. Feces from the animals, however, contained infectious particles that could cause hepatitis in other monkeys.

"Although these results suggest that a live, attenuated HAV vaccine may be difficult to develop, they do help us better understand what controls HAV growth," notes Dr. Emerson. "Ultimately, this knowledge may provide us with a roadmap to a less expensive and more potent killed vaccine that could be used worldwide."


NIAID is a component of the National Institutes of Health (NIH). NIAID supports basic and applied research to prevent, diagnose, and treat infectious and immune-mediated illnesses, including HIV/AIDS and other sexually transmitted diseases, illness from potential agents of bioterrorism, tuberculosis, malaria, autoimmune disorders, asthma and allergies.

Reference: SU Emerson et al. Identification of VP1/2A and 2C as virulence genes of hepatitis A and demonstration of genetic instability of 2C. Journal of Virology. 76 (17), pp. 8551-59 (2002).
Available online at http://jvi.asm.org/.

Press releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

The National Institute of Allergy and Infectious Diseases
is a component of the National Institutes of Health,
U.S. Department of Health and Human Services

Anne Oplinger | EurekAlert!
Further information:
http://jvi.asm.org
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Cancer cells make blood vessels drug resistant during chemotherapy
02.07.2020 | Hokkaido University

nachricht Novel potassium channel activator which acts as a potential anticonvulsant discovered
02.07.2020 | The Mount Sinai Hospital / Mount Sinai School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

The lightest electromagnetic shielding material in the world

02.07.2020 | Materials Sciences

Spintronics: Faster data processing through ultrashort electric pulses

02.07.2020 | Information Technology

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>