Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological marker for Alzheimer’s holds promise for earlier diagnosis and treatment

15.07.2008
Researchers at Robarts Research Institute at The University of Western Ontario have found clear evidence that increases in the size of the brain ventricles are directly associated with cognitive impairment and Alzheimer’s disease.
Ventricles are fluid-filled cavities in the brain. The research, led by Robarts scientist Robert Bartha, shows the volume of the brain ventricles expands as surrounding tissue dies. The research was published online today in the neurology journal Brain.

Currently, diagnosis for Alzheimer’s relies on neuro-cognitive assessments, such as testing of memory, ability to problem solve, count, etc. Definitive diagnosis is not possible until after death when an autopsy can reveal the presence of amyloid plaques and ‘tangles’ in brain tissue.

Previous research has shown the link between ventricle size and Alzheimer’s over longer time intervals. The research conducted at Robarts Research Institute shows that ventricle size increases with mild cognitive impairment before a diagnosis of Alzheimer’s disease, and continues to increase with the onset and progression of Alzheimer’s disease after only six months.

“These findings mean that, in the future, by using magnetic resonance imaging (MRI) to measure changes in brain ventricle size, we may be able to provide earlier and more definitive diagnosis,” said Bartha, who is also an Associate Professor in the Schulich School of Medicine & Dentistry in Medical Biophysics. “In addition, as new treatments for Alzheimer’s are developed, the measurement of brain ventricle changes can also be used to quickly determine the effectiveness of the treatment.”

The research also showed that Alzheimer’s patients with a genetic marker for Alzheimer’s disease exhibited faster expansion in ventricle volume.

The research was performed by utilizing MRI scans from individuals from across North America. Graduate student Sean Nestor, a coauthor, examined 500 data sets of individuals at baseline and six months later. The images were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI), a large multi-site trial sponsored by the National Institutes of Health in the United States and the pharmaceutical industry. The project includes an online database of imaging information gathered from 800 people at more than 50 sites across the U.S. and Canada. The images are MRIs of individuals with no cognitive impairment, those with mild cognitive impairment and people with Alzheimer’s disease. The database can be used by any primary researcher.

One of the ADNI sites is at London’s Lawson Health Research Institute, and is led by Dr. Michael Borrie, a co-investigator on the research. Dr. Borrie is Medical Director of the Aging Brain and Memory Clinic and Geriatric Clinical Trials Group at Parkwood Hospital, St. Joseph’s Health Care, London, a Lawson researcher and Chair of the Division of Geriatric Medicine at Western’s Schulich School of Medicine & Dentistry.

Examination of the MRIs was made possible by using software developed by Cedara Software, the OEM division of Merge Healthcare. In the past, researchers would have to manually or semi-automatically trace the ventricles in many brain images, each showing a “slice” of the brain. The Merge OEM software team, led by Vittorio Accomazzi, a coauthor in the research, worked closely with the researchers to refine the software to allow the processing of large volumes of data very quickly.

"This is one of the first major research studies published using data from ADNI", said Borrie, "but there will be many more neuroimaging and biomarker discoveries to arise from the ADNI project. It is a tremendous opportunity for researchers anywhere in the world to use the ADNI databases, to collaborate and share their findings in a new way that will move Alzheimer's disease research forward more quickly, objectively and effectively. Already we are building new international collaborations, arising from ADNI, that we could not have even imagined."

For more information contact: Kathy Wallis, Media Relations Officer - 519-661-2111 ext 81136, Kathy.wallis@schulich.uwo.ca

Kathy Wallis | EurekAlert!
Further information:
http://www.uwo.ca

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>