Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food inspection technology could kill waiter jokes

30.06.2008
New inspection X-ray technology developed by European researchers is helping to ensure that the only thing in people’s dinners is the food itself.

Finding a snail in a salad, a fish bone in a supposedly boneless fillet or opening a soup packet to reveal mouldy contents is an unpleasant – and potentially unsafe – experience. Small foreign bodies and packaging defects are frequently not detected by food producers, but a new X-ray inspection technology developed by European researchers is ensuring that the only thing in people’s dinners is the food itself.

For consumers, a more effective method of inspecting food products before they reach supermarket shelves means better-preserved and cleaner food on their dinner tables – and a reduction in the risk of food poisoning.

An improved inspection system also means producers can offer better quality produce, reduce the risk of spoilage, and gain a competitive edge over rivals.

Already in use commercially, the technology developed by the Modulinspex project uses low-energy X-rays to produce highly detailed images of food products and packaged goods. The images are then scanned via inspection software that can automatically detect any irregularities accurately and quickly.

The system can be used to check seals on food wrappers, locate packaging defects and find foreign particles of any size in any kind of food, from maggots in apples to grains of sand in bread.

Even in an era of high food standards and sterilised packaged produce, those problematic foreign bodies and packaging flaws are more common than most people realise, says Jørgen Rheinlænder, the managing director of Denmark-based InnospeXion, which helped develop the technology. Rheinlænder was the project coordinator for Modulinspex.

“Go down to your supermarket and pick up a package of dried pasta,” he says. “About one in ten will have pieces of pasta trapped in the seal that can let air and moisture in and spoil the product.”

Rheinlænder notes, for example, that some bacteria may spread on poorly sealed produce and go unnoticed by consumers until they end up spending the next day on the toilet or at the hospital.

Lower energy, higher definition
Until now X-ray inspection technology used by food processors was dominated by high-energy intensity systems not unlike those used to scan luggage at airports. These are able to detect a pebble in a package of corn but lack the resolution to pick out a grain of sand in a bag of flour.

The higher-resolution alternative, low-energy X-rays, had not been used because it took too long to scan the produce and would slow the rapid pace of production in modern processing and packaging plants.

The European researchers working in the EU-funded Modulinspex project have brought both greater speed and accuracy to the table.

By attaching a CMOS chip to the crystal that detects the X-rays in a low-energy system they have been able to build a detector capable of taking 300 images per second, enough to capture a crisp image of products moving on a conveyor belt at half-a-metre per second.

The X-ray images have a resolution of 0.1 millimetres – 16 times better than existing high-power systems, making it possible to detect objects as small and fine as a herring bone.

Modularity for easy adoption
The system is also modular, allowing hardware and software components to be adapted to suit the needs of any producer in the food industry.

“Most X-ray luggage scanners at airports are virtually identical because one type works anywhere,” Rheinlænder explains. “In the food industry, however, everyone has different requirements depending on the speed of the production line, the type and size of products being scanned and hygiene regulations.”

The consortium of companies involved in the project has already sold three of their systems to companies in Spain, the United Kingdom and Denmark. The systems were bought after the project partners held a demonstration at the Scandinavian Food-PharmaTech exhibition last November in Denmark.

The Modulinspex system, known as MCIS, also received the exhibition’s award for innovation.

Enormous market beyond food
Curiously, none of the three systems that were sold are being used in the food sector, confirming, in Rheinlænder’s view, the broader range of applications for the technology.

In the UK, for example, the system is being used by a company to inspect filters delivered by an outside supplier, while in Denmark it is being used to check the quality of fur used to make coats.

“The market for this technology is truly enormous,” he says. “In the food industry alone we can expect growth rates in excess of 20%… and we also see a market for using it in manufacturing, to inspect seals on car components, for example, or to check for counterfeit products.”

Meanwhile, Rheinlænder foresees demand in the food sector being driven not only by producers who want to offer better quality products but also by increasingly stringent food safety regulations in Europe and elsewhere.

Modulinspex received funding from the EU's Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89823

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>