Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European membrane expertise to focus on new treatments for human diseases

18.03.2008
A new 15 million Euro project led by the University of Leeds aims to find novel treatments for many human diseases by bringing together the leading European experts in membrane proteins.

The project – the European Drug Initiative for Channels and Transporters (EDICT) – will target about 80 proteins, which play an important role in human diseases as varied as diabetes, heart disease, neuropsychiatric disorders like epilepsy and depression, osteoporosis, stomach ulcers and cataracts.

Membrane proteins are key to every process in the human body, channelling ions or transporting chemicals and so are ideal targets for new treatments. Infections by pathogenic bacteria, yeasts and parasites also involve their own membrane proteins, which can be specific targets for development of new drugs and antibiotics.

The research is mainly funded by the European Commission, involves twenty-seven partners from twelve countries – including two Nobel Laureates - and is set to last four years.

Coordinating the project is Peter Henderson, Professor of Biochemistry and Molecular Biology from Leeds’ Faculty of Biological Sciences.

“Membrane proteins are seen by many as the next potential source of drug development, and so the EC is keen to fund research in this area,” he said. “However, they are difficult to study and are poorly understood, though the recent sequencing of the human and other genomes show they make up about one third of all proteins in all organisms, including humans.”

“At the moment, few groups of membrane proteins are being seriously investigated by the pharmaceutical industry, so this project will help to fill that gap. By bringing together the best scientists in this challenging field from all over Europe, we hope to make a real advance towards new treatments for key diseases.”

Industry has also seen the benefit of bringing such expertise together under one umbrella and working with the academics will be pharmaceutical giant AstraZeneca and a smaller company, Xention, which specialises in the discovery and development of novel and selective ion channel drugs.

The researchers include biologists, structural biologists, chemists and experts in the three key technologies: x-ray crystallography, nuclear magnetic resonance, and electron microscopy.

The team aims to map out the structure of the proteins, so they can identify compounds that could be developed as a treatment for these diseases. Where they have already mapped some structures, the team will have a head start and hope to make real advances towards new treatments.

Other researchers joining the project from Leeds include Professors Steve Baldwin and Carola Hunte from the Faculty of Biological Sciences and Professor Peter Johnson and Dr Colin Fishwick from the School of Chemistry. All are members of Leeds’ Astbury Centre, the leading interdisciplinary research centre in the UK studying how life works at an atomic level.

The two Nobel Laureates involved in the research are Director of the Medical Research Council’s Dunn Human Nutrition Unit in Cambridge, Professor Sir John Walker, who also holds an honorary doctorate from the University of Leeds, and Director of the Max Planck Institute for Biophysics in Frankfurt, Germany, Professor Hartmut Michel.

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk/media

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>