Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormone Refractory Prostate Cancers More Likely to Spread to Other Organs

21.02.2008
Prostate cancers that are resistant to androgen deprivation therapy are more invasive and more likely to spread to other organs than androgen dependent prostate cancers, UCLA cancer researchers have found.

Virtually all prostate cancers are androgen dependent at first, but they progress and become resistant over time. These hormone refractory or castration resistant cancers can grow despite surgical or medical therapies that deplete testosterone. The UCLA study is the first to link that progression with the cancer's tendency to spread to other organs.

The findings could change the way some prostate cancers are treated, spurring earlier use of hormone therapy to prevent the cancer's spread, said Dr. Robert Reiter, a professor of urology, a researcher at UCLA's Jonsson Cancer Center and senior author of the study.

Published in the Feb. 15 issue of the journal Cancer Research, the study makes the connection between androgen receptor and the spread of prostate cancer as well as the progression to androgen independence. Previous studies have shown that the androgen receptor is responsible for the growth of hormone refractory prostate cancer. However, no one has associated the spread of prostate cancer to the androgen receptor, Reiter said.

"We started noticing that the castration resistant prostate cancer models in the lab seemed to express genes that are typically associated with the spread of cancer," Reiter said. "We began to ask what cell signaling pathways might be responsible. We looked at the androgen receptor and were surprised to find that it was not only overexpressed in castration resistant cancers but also in invasive cancers that still relied on androgen to grow."

The study found that overexpression of the androgen receptor was critical to the cancer becoming more invasive. If a therapy could be found that blocked overexpression of the receptor, it might prevent the spread of certain prostate cancers.

Traditionally, doctors don't like to use hormone treatment - which stops the production of testosterone - early on in the treatment of prostate cancer because of the harsh side effects, which can include hot flashes, osteoporosis and sexual dysfunction. In the past, doctors have waited until the cancer spread to prescribe hormone therapy, Reiter said.

"This study may provide additional scientific rationale to support the recent trend that giving hormone treatment early on is better than waiting," Reiter said. "Early hormone treatment in this group of men might allow them to live longer. High levels of androgen receptor in the primary tumor might also predict which cancers are more likely to spread despite initial surgery or radiation."

This strategy could be particularly effective in high risk men, those with large primary tumors, high Gleason scores and those that have lymph node involvement at diagnosis.

Prostate cancer is the most common cancer in men in the United States. This year alone, more than 218,000 men will be diagnosed with prostate cancer. About 27,000 men will die from the disease.

Reiter and his team will next seek to understand the mechanism by which androgen receptor overexpression is causing the cancer to spread. If they can uncover the mechanism, they might find new and better targets for drug therapy in addition to targeting the androgen receptor.

UCLA's Jonsson Comprehensive Cancer Center comprises about 235 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2007, the Jonsson Cancer Center was named the best cancer center in California by U.S. News & World Report, a ranking it has held for eight consecutive years. For more information on the Jonsson Cancer Center, visit our Web site at www.cancer.ucla.edu.

Kim Irwin | EurekAlert!
Further information:
http://www.cancer.ucla.edu
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht Study shows novel protein plays role in bacterial vaginosis
13.12.2019 | University of Arizona Health Sciences

nachricht Illinois team develops first of a kind in-vitro 3D neural tissue model
12.12.2019 | University of Illinois College of Engineering

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>