Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Don't We Get Cancer All The Time?

20.12.2007
The seemingly inefficient way our bodies replace worn-out cells is a defense against cancer, according to new research.

Having the neighboring cell just split into two identical daughter cells would seem to be the simplest way to keep bodies from falling apart.

However that would be a recipe for uncontrolled growth, said John W. Pepper of The University of Arizona in Tucson.

"If there were only one cell type in the group, it would act like an evolving population of cells. Individual cells would get better and better at surviving and reproducing," said Pepper, a UA assistant professor of ecology and evolutionary biology and a member of UA's BIO5 Institute.

"When cells reach the point where they divide constantly, instead of only when needed, they are cancer cells."

Instead, multicellular organisms use a seemingly inefficient process to replace lost cells, Pepper said. An organ such as the skin calls upon skin-specific stem cells to produce intermediate cells that in turn produce skin cells.

Although great at their job, the new skin cells are evolutionary dead ends.
The cells cannot reproduce.
Losing the ability to reproduce was part of the evolutionary path single-celled organisms had to take to become multicellular, Pepper said.

What was in it for the single cells?

"Probably they got to be part of something more powerful," Pepper said.
"Something that was hard to eat and good at eating other things."
Pepper and his colleagues published their paper, "Animal Cell Differentiation Patterns Suppress Somatic Evolution," in the current issue of PLoS Computational Biology. Pepper's co-authors are Kathleen Sprouffske of the University of Pennsylvania in Philadelphia and the Wistar Institute in Philadelphia and Carlo C. Maley of the Wistar Institute.

The National Institutes of Health, the Pennsylvania Department of Health, the Pew Charitable Trust and the Santa Fe Institute funded the research.

Pepper became curious about the origins of cooperation between cells while he was a postdoctoral fellow at the Santa Fe Institute in New Mexico.

"Organisms are just a bunch of cells," he said.

"If you understand the conditions under which they cooperate, you can understand the conditions under which cooperation breaks down. Cancer is a breakdown of cooperation."

Pepper and his colleagues used a kind of computer model called an agent-based model to compare different modes of cellular reproduction.

The results indicate that if cells reproduce by simply making carbon-copies of themselves, the cells' descendants are more likely to accumulate mutations.

In contrast, if cellular reproduction was much more complicated, the cells'
descendants had fewer mutations.
Suppressing mutations that might fuel uncontrolled growth of cells would be particularly important for larger organisms that had long lives, the team wrote in their research report.
Researcher contact info:
John Pepper, 520-626-0440
jpepper1@email.arizona.edu

Mari N. Jensen | The University of Arizona
Further information:
http://eebweb.arizona.edu/Faculty/Bios/pepper.html
http://www.santafe.edu/profiles/?pid=110

More articles from Health and Medicine:

nachricht Carbon monoxide improves endurance performance
05.08.2020 | Universität Bayreuth

nachricht Diverse amyloid structures and dynamics revealed by high-speed atomic force microscopy
04.08.2020 | Kanazawa University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Study clarifies kinship of important plant group

05.08.2020 | Life Sciences

Human cell-based test systems for toxicity studies: Ready-to-use Toxicity Assay (hiPSC)

05.08.2020 | Life Sciences

Molecular Forces: The Surprising Stretching Behaviour of DNA

05.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>